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Model Heat and Soil-Water Flow

For slowly moving freezing fronis in soil, the heat-transpor! equation may be

approximated by the Laplacian of temperature, Consequently, potential theory
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may be assumed 10 apply and the temperature state can be approximated by an
analytic funcrion. The movement of freezing fronts may be approximated by a
time-stepped solution of the phase-change problem, thus solving directly for heat
flow across a freezing or thawing front. Moisiure transport mav approximated by

using an exact solution of the moisture-transport equation assuming quasi-steady-
State conditions, appropriate  boundary conditions, and an exponential function
refating unsarurated hydraulic conductivity (defined within the thawed zones) io
pore water pressure {tension). This approach is used to develop a single modei of
ive segregarion {frosi-heaue) in freezing soils. Applications ro published and ex-
perimental one-dimension soif column freezing data show promising resulls.

Introduction

This paper reports on the development of a simple two-
Jimensional model ot coupled heat and soil-water flow in
treezing or thawing soil. The model also estimates ice-
~curegation (frost-heave) evolution. Ice segregation in soil
rosults from water drawn into a freezing zone by hydrauiic
‘_mdlents created by the freezing of soil-water. Thus, with a
tavorable balance between the rate of heat extraction and the
rate of water transport to a freezing zone, segregated ice
ienses may form.

Predicting the rate of ice segregation in soil is an old
rroblem that has received much recent attention by a number
o1 investigators who have attempted to model ice segregation
by means of mathematical models. O'Neill [8] reviews somte
oI these efforts, Generally, most modeling efforts encompass
modeling equations of coupled heat and moisture transport as
well as a varlety of ancillary equations that estimate
urameters and atempt to mode! the complex physics and
Shermodynamic processes in freezing zones,

'n ¢ontrast to these approkimate models. a simple model of
we segregation such as discussed by Quteals (9] or earlier by
srakawa {1, otters advantages over the muitiparameter
mwdels advanced in the literature. First, a simple model is
<usily understandable to the praciicing engineer, whereas a
“elatively compiex modet such as Guymon and others [3] and
ifarlan {4] {imits its audience 10 a specialized few. Second, a
~omplex model makes it moere ditticult to determine the

nurce of modeling errors since there is often an unknown
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interaction between model parameters. The more parameters
imbedded in a modei causes greater difficulty in estimating
the uncertainty. However, complex models are needed due 1o
the nature of the frost-heave process, for which a simpie
model may fail to achieve the desired accuracy. Of course,
Just because a model is complex and multiparameter does not
guarantee the model accuracy.

The primary objective of this paper is to expand on the one-
dimensional model of ice segregation advanced by Quzcalr [9].
The proposed model will accommodate two-dimensional
problems and will be based on a simple thermodynamic
balance of heat flow along a freezing front of differential
thickness. A secondary objective of this paper is to introduce
a numerical analog based on analvtical function complex
variable theory by fitting a polynomial of the complex
variabie potentiat and siream functions to the prescribed
beundary conditions. The selution is determined by the values
along the domain boundary analogous to the usual BIEM
(boundary integral equation methods).

For ice segregation moving boundary problems where
phase-change latent heat effects dominate the heat transport
process, the heat-balance equarions may, in some general
ciases, be approximated by the Laplace equation coupled with
the boundary conditions modified to in¢lude the cttecs of
phase change. Similar assumptions are made for the Stephan
sodution, which has been used for vears 1o calculate the
thickness of ice. To do this, the dyvnamic component of the
classical hear-transport equation 1y assumed negligible when
treezing or thawing a soil region. Moreover, ttis necessary (o
JGasUmMe  an asalropie,  homogeneous  solution  domain.
However, by means of a suitakble coordinate transtormation
Yor relatively geometricailly sumple revions, anisotropic or
oven heterogeneous domains may be transtormed into a
regton in whieh potential theery may apply. For these tvpes of
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problems. complex variable modeling technigues may be
applied, which may reduce compurter storage and execution
times when compared to classical domain methods.
Generally, in freezing problems we are interested primarily in
the location of the freezing front and in the estimation of heat
and soil-water flux values normal to the freezing fron:t. The
proposed model of ice segregation focuses on these two types
of problems directly.

Discussion of Modeling Approach

The proposed simple model of ice segregation is based on
the one-dimensional model developed in Outcalt [9] and
extends the two-dimensional BIEM geothermal model of
Hromadka and Guymon [5] to include soil-water flow. In the
‘ollowing, a general summary of the modeling assumptions
used in the ice segregation maodel will be presented.

The model is applicable to a saturated or unsarturated soil
which is subjected to constant or stepwise constant upper and
lower boundary conditions of temperature and soil-water
pore pressure. The coupling of boundary conditions to the
modeling domain is restricted by the capability of the model
10 approximate a variation in boundary conditions by time-
averaged steadv-state solutions of the governing flow
equations. This limitation of the model will become apparent
after the following description of the model development.
Major assumptions employed in the model are:

I Unsaturated soil-water flow theory applies and the ex-
tended Darcy’s law is valid in the unfrozen soif. Moisture
movement is driven by the total hydraulic head energy
eradient.

2 The classical heat equation applies to the entire soil
system.

3 Soil-warter phase change latent heat effects dominate the
heat-flow equation and the transient heat and convention
terms can be considered negligible. This assumption may be
acceptable for problems involving a slow freezing/thawing of
fine-grained soiis such as silts. Frost-susceptible soils where
ice segregation is most likely to occur favors this assumption
in thart the freezing front propagation is slow. (This assump-
tion may fail for high ice segregartion ratio case studies.)

4 The volumetric latent heat of fusion, L, is constant in the
temperature ranges found in seasonally freezing/thawing
soils,

3 lce segregation occurs when moisture drawn into the
freezing front exceeds the soil porosity less the unfrozen water
content.

6 Hysteresis is not present and all functions are single-
vatued and piecewise continuous to approximate possible
jump discontinuities.

7 Soil-water sali-transport effects are negligible. The
treezing front maintains a constant temperature, such as 0°C.

% Overburden and surcharge effects are presentiy
neglected.

Y The freezing front separates the problem domain into
cotmpletely trozen and completely unfrozen regions.

10 Soil-water ftow ir the frozen regions is negligible. This
assumprtion may be acceptable for problems involving a
seasonaily freezingsthawing soil where freezing occurs for
only a few months and not for long durations, as would be
unposed by a gas pipeline operated continuously at sub-
treezing temperatures.

11 The onlv soil deformartion considered is due to ice
segregation and this deformation is lumped vertically above
the freezing front.

12 The problem domain is homogeneous and isotropic.
Nonhomogeneous and anisotropic domains can be rescaled
tror sunple cases) into another homogenegus, isoiropic
Jomain.
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13 The heat and soil-water flow eguations can be modeled
as guasi-steady-siate processes 1or small durations of time.
All time-dependent state variable (dynamic) terms can be
assumed negligible compared 10 the dominating phase-change
1erms.

The heat flow PDE (partial differential equation) can be
modeled as the simple Laplace relation defined by

kT T(x,p) =00 (xp) e,
K, VIT(xy)=0; (xp) €, (1)

where convected heat effects are assumed negligible; &,.k, are
frozen and thawed thermal conductivities; 1,2, are frozen
and thawed subregions of the global domain ; and T is
temperature, it can be noted that the freezing-front contour,
I'*, separates {}; and @, and that any homogencous effecis due
to k, and k, are isolated by the various subproblems defined
in equation {1). Domain numerical models generally require
global martrix regeneration due to nonlinear conduction
parameters in a finite element or control volume; this step is
eliminated by the proposed modeling approach. The freezing
contour, I'*, is defined by

M*={(xy): Tlx,y)=0°C] 2)

which geometrically represents the 0°C isotherm.
Propagation of I'* in  is determined by a basic heat-balance
relation

L— =L, 3

ds
dt N
where ds/dt is a movement of coordinates on " due to the net
heat evolution from the summed heat fluxes, g,, normaltoI'*
with the sign convention defined according to ds/dt.

Soil-water tlow is considered as vertical only (i.e., a one-
dimensional model). Horizontal flow is assumed to be
negligible. However, a large class of real world problems,
such as roadway freezing problems, are capable of being
modeled by this simple modeling approach. Soil-water flow is
modeled in a two-step analog. First, the soil system is
discretized into verrical finite element strips wherein a
background steady-state water content (or pore warter
pressure) profile is determined for each strip as a function of
the strip’s curremt boundary conditions {(on the top and
bottom). The soil-water flow-conduction parameter, D{®), is
assumed to be a simple exponential function such that a
steady-state moisture {lux is readily computed {neglecting
gravity effects in the soil-waier flow PDE) along the strip
boundary

D(#) =ae* {4}

The second process is a soil column dewatering model for
each vertical finite element strip. In this second analog, soil-
water tlux is approximated along the finite element strip until
the background steady-state water-content profile is reached.
Figure | illustrates these two models used in the total soil-
water flow analog.

The foregoing model assumptions, although restrictive to a
total ice segregation model, may be generally attractive for
use on problems involving a seasonally freezingsthawing fine-
grained soil which is frost suceptible. Special boundary
considerations of geometry and soil-water flow can be easily
addressed on a problem-by-probiem basis. Some of the
model’s advanrages are as follows:

! The model is based on a simple approach for esiimating
ice segregation, which accounts tor hear and sotl-water
Lransport.

2 The freezing tront and frost-heave development are
defined directly without 2 domain mesh regeneration.
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fig. 1 Example embankment showing boundary nodal placement for
heat-transier equation and finite sirips for moisture-transtar equation

3 Nolnlinearity of conduction parameters due 1o phase
change is estimated.

1 For homogeneous problems, fewer nodal points are
required in this model than in domain models.

3 Computer coding requirements are significantly reduced
over numerical models using domain methods.

4 The mode! requires fewer parameters than domain-
method models which incorporate dynamic terms.

7 The application problem provides an indication as 10 the
success (or failure) of a model developed from these sim-
piifying assumptions.

Numerical Model Formulation

Soil-water flow in unfrozen soil is modeled by means of
~everal quasi-one-dimensional submodels of soil-water flow
Jefined in & vertical strip discretization of the soil matrix
located below the freezing front, ™ (Fig. [). In the two-
dimensional model], gravitational effects are neglected in the
zoverning PDE and a simple soil-water diffusivity model is
used in each vertical strip

i D(8) % 0 5)

Ay ay {
where the soil-water diffusivity, £, is assumed a fuaction of
volumetric water content as given in equation {4). In each
vertical strip, an upper and iower boundary condition is
~pecified according to

8=8,, y=0(water table) (6a)
G=8,, y=H(™") {68)

where condition equation (6a) reflects a saturated soil (8,
wguals the soil porosity) at the water table, and in equation
16by ¢, is an unfrozen water content characteristic 10 the soil
tGuvmon and others, [3]). Quicalt [9] assumes ¢ is linear
netween [ and the water table (which is separated by length
Hy. In the two-dimensional model, equation (5) is integrated
o directly calculate a steady-siate sgil-water tlux, v, from the
water table o T'* giving (for g and b constants)

[
ve= TH (e — e} 7y

i1 the timit as the exponent term & approdaches zero, Cquation
i7"} approaches the simple linear gradient model used by
Dutealt (9]
lim =2 {8, ~6,) (8)
h—-u H
Uguation (R) is used to dewater the soil column in cach ver-
nieal strip until the spegified initial condition soil-water
sontent protile equals the migimua Steady-state waler
content protile determined from equations (3) and {6). Atfter
the necessary dewatering ot the vertical strip, equation {7} is
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then used as the minimum value of soil-warer tlux teeding the

slowly moving freezing tront, I'*. In the Qutcalt model, an
“apparent” hvdraulic conductivity is required for use of
equation (8) in the unfrozen zone; this calculation is not
necessary for the model of equation {7).

Analogous to the soil-water flow model, the freezing from
propagation is assumed to be slow enough to justify the
elimination of the dynamic heat capacitance term from the
classical heat equation. This allows the calculation of heat
flux, q,. along the freezing front, I'*, to be accomplished by
using a steady-staie temperature profile, equation (1), within
the problem domain, Q.

Figure 1 shows an example solution domain. A constant
temperature is specified for T, and T, (where T is the
potential function) with the sides of the roadway embankment
problem being specified with values of @ = Q, and Qg
{where (J is a stream function). Neumann boundary con-
ditions can be used on the left and right sides in determining
Q, and Qg, or an ¢quivalent 7; and Tj. Any of the usual
boundary integral approaches can be used for this problem; a
complex polynomial approximation is used in this mode! due
to the significant reduction in computational effort when
compared to other BIEM requirements.

Assuming the freezing front location o be defined at some
time 1, the dynamic heat evolution problem is approximated
by solving the Laplace relations (Fig, 1) to estimate the heat-
flux values along the freezing front during a timestep, A¢. For
example, in the problem studied, timesteps of one day are
used with good resuits. From the estimated heat-flux values,
the change in the freezing front is calculated from equaticn
{3). That is, a method to calculate the change in the freezing
front coordinates is to calcufate the change in the nodai point
coordinates in the direction of net normal heat flux. For
nodal points located at the midpoint of boundary elements,
the determination of new coordinates at the freezing front
may be estimated by a simpie balance between the volume of
soil frozen and the time-integrated heat evolved. Due 1o the
model’s basic assumption of phase-change effects dominating
the entire heat-transportacion process, the freezing fromt
evolution is slow and the simple freezing front evolution
model was tound to be adequate for the problems tested, The
freezing front contour, I'* (Fig. 1), separates an otherwise
simply connected domain Q into a frozen and thawed sub-
domain, @, and ., respectively. Among any contour C the
steady-state thermal condidon assumed in € (for smali
durations of 1ime) impiies that

“ _Qnds=i Q. ds=0 9

where Q,, O, are normaf and tangential components of the
heat flux along the contour C; and ds is a differential arc-
length. Equation (93 establishes that the temperarture function,
or stale variable 7, is harmonic and satisfies the Laplace
equation

Tir=0; T, Q, (1
The harmonic conjugate stream function Q exists in £, and Q.

and is related to T by the Cauchy-Reimann equations of
complex variable theory (Churchill [2])

?Z— = ‘29 {1la}
ax gy

8r -0 A1)
J_!’ iy

The complex temperature £(32) is defined in each of 2. and
. by
() =Tl il (ool 2t

Aoy =Ly i el {125y

Hor Sor
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Fig.2 Complex variabie polar coordinates

By definition, both £,(z) and £, (z) are analytic in their
respective subdomains and can be expanded by appropriate
Taylor-series expansions. As an approximation, a Taylor
series will be developed, centered at the compiex plane origin,
which satisfies the specified boundarv conditions for both
£, () and £,(z2), respectively. Letting w(z) denote either
£.(2) or §(32), w(z) is approximated in its appropriate
subdomain by

wiz) = (a, +i3,) + (e, +iB)z+. . . (13}

Using polar coordinates (Fig. 2), the Euler formula describes
point 7 by

+ (o, +i8,)3"

Z=Xx+iy=R{(cosf+isind) = Re"* (14)
and by de Moivre’s theorem
T =Rfe® k=0,12, ... (15)

Combining equations (13) and (15}, expansions for both 7(2}
and Q(z) of the analytic function w{z) is given for some
point in &, or ,

T=op +a Reosf — 3; Rsind {16a)
+ o> Rc0s20 - 3. R sin 28
+ ...
+ o, R"cosnt— 3, R"sinnd

Q=43 + 3, Rcost+ o, Rsin¢ Loy

+ 32 R cos28 + o, R5in 20
oo
+ 3, R"cosnd + o, R"sinnt

where 10 equation (16}, a (& — 1) order complex polynomial
can be determined given 2k values of 7 or Q tor each ap-
ropriate subregion,

in the ice segregation modei, values of either T or  are
anown on the contours P*, T',, and ',. Consequently, a nodat
~oint discrenzation of the boundary of I, and T* with
~pecified values of T or Q at each node can be used to develop
he e ,d,) values of the £, (2) polynomial: and similariy. the
-ame helds Tor the £.(2) polvnomial. Specificallv, the same
aodal point discretization of ™ is used ror both the deter-
mination of £,(32) and £,132). and values of T and hear fiux.
o are determined on [ hy the Cauchyv-Riemann relations

T=0°C, (x.y)el
8T B0

an ax

(17
Lotanel (1o,

where cquation (176) holds true due to '™ being an other-
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Fig.3 Six node BIEM modei of one-dimensional $oil column

mal, and where the sign of the gradient depends on the
direction of the contour tangential with respect to @, or 2,
with 7 being the outward normal direction.

In subdomain @,, a global matrix is developed from
equation (16) based on specified values of either T or ) along
I'yand I'™*

T, I OR,cos8, —R,sind, @, |

Q, 2 1R sing, Rycosé, ... #,

T 1 0OR.costs — R.siné, @y :
Q- =10 1R,sing, Rycos6, .. ..

To | ORucosty —Ruysings, ax
L@x & L0 1 Rysinfy  Rycosfy du 4 U18)

where from 2k nodal points, a (k — 1) order polynomial £, (2)
will be developed tor ©,. An analogous development appiies
for the complex polynomial &, (2},

The full svstem is written in matrix form

KT, Q)=0

where K is a fully populaied mairix of known coefficients
from equation {18) and (¥, Q) is the array ot (T, .) vaices ol

(19)

the complex temperature ¢,. Hear-tflux values can be
estimalted along I'* directly trom equation (174).
For an anisotropic homogeneous problem, the

methodology in equation (19) can be utilized by rescaling the
global problem to accommodate the ratio of horizontai-to-
vertical thermal conductivity values (Myers [7]), and solving
the modified problem in the new (X.¥) space.

For homogeneous problems, complexities arise in an etfort
to simultaneously solve for the unknowns of £,, shared on the
boundaries of homogeneous regions. Several nodal points are
required interior of © along the boundaries of the defined
homogeneous regions, resulting in a significant increase 10
computational effort due to the fully populated matrix
requirements of a numerical formulation. In this model, the
method used for nodal point placement along the boundary
contours 1s 10 evenly locate the nodal points and add ad-
ditional nodes unitormly to the contours until the comples
polynomial coeflicients {n.,3) begin o show negligibie
chunge, Comparison of modeled results to analytic soluniens
of several harmonic tunctions indicated that good estimates
o Tlux values and unknown 7 or ¢J values are produced at te
siven boundary nodal points.

To show that {wi{z): wiz) = &, (2). & (2) 1 sausties the
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gsoverning Laplace PDE follows from elementary complex
variable theory ot analvtic tunctions (e.g., Churchill [2]).
Consideration of singularities occurring within the radius of
convergence of w{z) can be addressed by expanding the w(z}
polynomial about another point interior of { such that the
boundary of @ = [ UT, lies entirely within the assumed

radius of convergence of the true solution of the governing
PDE.

Model Verification

The two-dimensional model was tested against a one-
dimensional freezing column experiment given in Jame [6].
The soil used was a fine-grained Silica Flour, and detailed
heat and soil-water flow parameter data are given in that
study. ‘

The modei was applied to the one-dimensional test problem

J

iR CALCULATION)

=80 HR (USED A IMITIAL COMDITION

by using a six nodal point model shown in Fig. 3. A single
finite strip is used to approximaze soil-water tlow in the
unfrozen subregion. Separate Laplace approximations are
used in each of the frozen and unfrozen subregions. The
initial moisture content of the soil was 15 percent (dry weight)
with boundary conditions as plotted in Figs. 4 and 5.

Difficuity was encountered in the initial portions of the
simufation due to the relative rapid movement of the freezing
front. To avoid this difficulty, the inital condition of the test
was taken to be the experimental results for time at 6 hr.
Although using very small timesteps (0.01 hr) reduced the
approximation error, the computer results continued o
overestimate the freezing front penetration by about 20
percent during the initial 6 hr of simulation.

Figures 4 and 5 compare the experimental results of Jame
[6] for the freezing column and the model resuits using the six
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Table 1 Modeling resuits and laboratory frost-heave data
Domain Ice segreganon Laborarory

Time mode} ! mode} data
{davs) fcrm) fcm) {cm)
3 1.3 1.3 1.6

10 29 2.6 2.8
15 19 3.9 39
20 4.6 4.8 4.4
2% 5.0 5.4 3D
30 5.2 5.8 5.6
15 5.4 6.0 5.8
40 5.4 6.1 5.8
45 5.5 6.2 5.8
110 5.6 6.4 5.8

“YGuymon and others [3]

nodal point scheme. In this test, no frost heave was predicted
which agreed with the experimental resulis.

In order to obtain the given results, the soil-water con-
duction parameter had to be reduced to about 0.07 of its value
as determined by the thawed unsaturated conduction
parameter of equation (4). This parameter modification
compares 10 the reduction values of 0.0% to 0.001 used by
Jame [6] in his finite difference model based on the theory
given in Harlan [4]. Other model hydraulic parameter
modification formulas are given in Taylor and Luthin (10
and Guymon and others [3] which exponentially reduce the
soil-water flow conduction parameter as a function of ice
content.

From Fig. 5, the torai moisture content begins to deviate
from the experimental results as time continued. This
discrepancy was significantly reduced by varying the required
latent heat budgert specified at the freezing front domain. The
results of Fig. § are based on a constant coefficient of latent
heat of 80 cal/cm’. [t can be noted that this test case essen-
tially involved only a dewatering of a soil column and,
consequently, is testing only the simple dewatering algorithm
of the solid-water flow model.

To examine a freezing column problem where a water table
is of concern, the domain model of Guymon and others {31
was lested against the model of Fig. 3. Using parameter in-
formation of a Fairbanks silt and identical boundary con-
dirion information, both models predicted values of freezing
front penetration into the soil and frosi-heave development.
Both modeling results for frost-heave are given in Table 1.
From Table 1, comparable results are produced by both
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models, although the computationai effart is significanily
reduced by the proposed modei.

Conclusions

A simple numerical model to predict ice segregation by
means of a coupled heat and soil-water flow analysis is
developed. The model can be prepared for use with a
significant reduction in coding over current domain type
models. The model produces reasonable predictions of frost-
heave development and the location of freezing fronts. The
model predicts values of heat and soil-water flux directly at
the freezing front without the regeneration of a global two-
dimensional finite element on finite difference mesh.

The model is seen to be a strong function of the impedance
factor used 1o reduce soil-water flow at the freezing front.
Although models use such impedance factors to approximate
soil-waier flow effects in freezing soils, a definite procedure to
estimate such a factor is not given in the literature. However,
this factor may be considered a model calibration parameter
which is determined by autempts to maich one-dimensional
column data. After calibration, the model can be used in
approximating two-dimensional problems, where the two-
dimensional domain is composed of the material studied by
the one-dimensional column tests.
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