CoOMPLEX POLYNOMIAL APPROXIMATION
OF THE LAPLACE EQUATION

By T. V. Hromadka, II' and Gary L. Guymon,” M. ASCE

AssTRACT: A method of approximating the solution of the Laplace equation in
two-dimensions is presented. The numerical approach is to determine a com-
plex variable polynomial which satisfies the specified boundary conditions along
a simple closed contour. Since the method is simple to apply to time-stepped,
quasi-steady state saturated ground water problems or moving boundary prob-
lems, a significant savings in computational effort over other boundary integral
equation methods is available. Applications to a free water surface problem and
a moving boundary problem are presented. Error bounds and model stability
are considered.

INTRODUCTION

The purpose of this paper is to develop an application of complex vari-
able analytical function theory to the approximation of the two-dimen-
‘sional Laplace equation
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in which £(x,y) is a two-dimensional harmonic function defined in global
domain {} with global boundary I'. This type of analysis differs from the
usual domain numerical methods or boundary integral equation meth-
ods (B.ILE.M.) in that a complex approximation function naturally sat-
isfies the governing partial differential equation (P.D.E.) and a weighted
residual minimization is, therefore, not required. Dirichlet, Neuman, and
mixed boundary conditions along the global boundary are used to de-
velop the P.D.E. complex polynomial approximator. Interior nodal points
are not required although inclusion of domain nodal points can be used
to extend the concepts presented here.

B.LLE.M. models based on real variable theory are well known and
have been applied to two and three-dimensional problems involving the
solution to Dirichlet (specified boundary state variable) and Neumann
{specified boundary state variable normal gradient) problems (6,5). Breb-
bia (1) generalizes B.I.LE.M. modeling to a boundary element method
which has been applied to harmonic function approximations. Liggett
and Liu (8) apply B.I.LE.M. models to time dependent free-surface flow
in porous media.
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FORMULATION

Recently, Hunt and Isaacs (4) utilize the Cauchy’s integral theorem to
develop a B.I.LE.M. model for solution of the Laplace equation. For a
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complex function o{z) analytic inside a simple closed contour C, Cau-
chy’s theorem relates the value of w(z) to the boundary integral

L wiz) dz, i=V-1..... N @
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where point (2) is interior of contour C, and contour C is integrated in
the positive (counter-clockwise) direction. In Eq. 2, the analytical func-
tion @(z) is composed of two harmonic real variable two-dimensional
functions ¢(x,y) and d(x,y)

@) =& y) F i y) e (3)

in which z = x + iy, and ${x,y) and {y{x,y) are orthogonal functions
that satisfy the usual definitions of state variable and stream function,
respectively; for example, &(x,y) are the potential functions in a satu-
rated porous media flow problem and (x,y) are the stream functions.

The harmonic functions associated to the complex function w{z} are
related by the Cauchy-Riemann relations (2)

ab oy
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and ™ Ty T {5)

Along an isopotential or streamline, normal flux or the potential gradient
is calculated from Egs. 4 and 5 in which tangential and normal distance
is used rather than the (x,y) coordinates.

From the above considerations, Dirichiet, Neumann, or mixed prob-
lems can be studied using the Cauchy integral theorem to formulate a
B.I.LE.M. model. The procedure is to first subdivide the global boundary
I' into segments by nodal points. It is assumed that either values of {
or ¢ are specified at each nodal point. In their model, Hunt and Isaacs
(4) assume that w(z) is linear between successive nodal points such that

z—Z; Ziq1 — Z
w(z) = (———’) Wi (’—-—) s {6)
Ziv1 T Zj Zj+1 T I

in which o; = w(z;) and z¢{z;,2;.] in which the contour integration is
in the positive sense. A contour integration along global boundary T is
made for each nodal point on I such that the Cauchy principal value
results in a linear expression of the unknown nodal variable as an im-
plicit function of all unknown nodal variables on TI'.

The contribution from all boundary nodal points results in a fully pop-
ulated square matrix

K(d’r LT3 T | S L R R ]

in which X is an N x N matrix for N nodal points and (b, ) is an array
of unknown values at the boundary nodes. Mathematically, the above
formulation can be expressed by using a complex variable approximator
@(z) of the true solution w(z} which is defined on I such that
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in which [, is a segment of I between two successive nodes on I

An alternative approach is developed using a complex polynomial ap-
proximation on I' instead of using a contour integration of Cauchy’s
theorem. The requirement of &(z) being linear between nodal points in
Eq. 8 can be extended to w(z) being a complex polynomial of order {k
— 1) where 2k nodal points are specified on I'. In this case, it is assumed
that 2k boundary conditions are known along I', such as either ¢ or ¢
at specified nodal points.

For example, given a six nodal point discretization of I' (Fig. 1) a sec-
ond order complex polynomial approximation @;(z) can be defined on
" (and therefore in {})) such that

D202) = (g + iBo) + (a1 + iP1)Z + (@2 + iB2)Z% oo iireeeeinn, ©9)
By Cauchy’s integral theorem,
@ d
2mi Gy(z0) = 95 L (10)
r 2= 2o '

Combining Egs. 8, 2 and 10,

2ni D2(z0) = (0o + iBo) é + (o + 1By} ¢
r(z- (z — z0)
z%dz

+(az+iaz)4; L BT (11)
rl(z - 2zo)

Eq. 11 can be expanded by partial fractions and simplified into the
expression

2wi ®2(zo) = [(oo + 1Bo) + Zofoy + iB1) + 28 (a2 + iB2)] #

r{z — zo)
+ (g + iB1) + zolos + 1B2)] ¢ dz + (s + iBy) & 2dz . ....... (12)
r . r
For z, interior of T,
¢ d = 2mi; Q 13
=20 L T A - (13)
© ®
® ®
@ ®

FIG. 1.~-Six Point B..E.M. Discretization of Global Boundary I'
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And for any z,, the complex functions z and z* are analytic in the entire
complex plane and

From Egs. 12, 13, and 14,

®2(zo) = (ag + 1Bo) + 2oy +iB1) + z5 (a2 +iBa)evevevrvnennnn.. (15)

That is, a complex polynomial approximation on I' can be determined
by simply evaluating the complex polynomial on I rather than using the
contour integration of Cauchy’s theorem to evaluate the approximation
coefficients. In Eq. 15, &;(z,) can be evaluated for z,el’ as well as z,efl.
Additionally, the approximator &,(z) is based on a higher order poly-
nomial interpolation on I rather than a linear interpolation between no-
dal points.

Using Eq. 15 to evaluate the unknown coefficients of an approximator
function &(z) on I’ results in a straightforward method to determine the
unknown values of ¢ or ¥ on F. Using polar coordinates (Fig. 2), the
Euler formula describes a complex point z by

z=x+iy=R(cos@+isin®)=Re®. ..................... (16)
in which R? = x? + y?, 8 = arctan (y/x). By de Moivre’s theorem,
2= R*e®, k=0,1,2, . e (17)

or in simpler terms,
ZP=R¥(cos kO + isinkB). ..ot e (18)

From the previous, expansions of complex polynomial order k is made
for 2(k + 1) nodal points by

&(z) = ap + (a;Rcos 8 — B, R sin 8)

+ (a3 R%*cos 20 ~ B, R?sin 268) + ... + (ax R* cos k& — 8, R¥sink6) (19)
Y(z) =P+ (B1Rcosd + a; Rsin6) .
+(B2R%cos20 + a; R?sin268) + ... + (B« R*cos k8 + «, R*sink8) (20)

iy

)

(0 + 0i)

FIG. 2—Polar Coordinate Definition of Complex Point z,
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In matrix form, Eqs. 19 and 20 are evaluated for each node to give

( &y } 1 0 R;cos 6, ~R;sin 8, coel o)
l!l] 0 1 RlsinBI R1 CUSB] Ve Bg
¢2 1 0 Rz COSs 92 _R2 sin 92 . o
< p=10 1 R sin 6, R,cos 8, | dBa (21
b2 1 0 Ry20088x30 —Ru2sinbx., ...] |o
L u+2j _0 1 Ryyz8inBus; Rpizc088x. . -] B

in which in Eq. 21 only the known nodal values of either ¢ or J are
used. Solving for the (a;, ;) gives a kth order complex polynomial which
satisfies the Laplace equation in {} and the given boundary conditions
at specified locations on I'.

A significant advantage of the simple formulation of Eq. 21 over other
B.I.LE.M. formulations is that each row of the global matrix does not re-
quire a complete circuit of the boundary integral to determine the matrix
entries. This advantage reduces overall computational effort and allows
for an improvement in computational efficiency for time dependent
problems wherein the global matrices are frequently regenerated. An-
other advantage is that the proposed model is simple in application. Fi-
nally, the proposed method offers a higher order polynomial approxi-
mation &{z) of the true problem sclution w(z) with significantly less
computational effort than a linear interpolation model.

The time savings obtained by use of the simpler global matrix con-
struction of Eq. 21 becomes apparent when using the model to approx-
imate state variable and normal flux values in a moving boundary
problem (normal flux values can be computed by the Cauchy-Riemann
equations modified with respect to normal and tangential coordinates).
Many problems of interest include either an iterative scheme or a time-
stepped quasi-steady state solution to a time-dependent P.D.E. which
require several global matrix regenerations. Consequently, the simpler
global matrix of Eq. 21 offers a method to reduce overall model costs for
many problems.

MODEL APPLICATIONS

Three problems will be presented in order to demonstrate the use of
the proposed model. For comparison purposes, results from the model
of Hunt and Isaacs (4) will also be given. Discussion of stability and
convergence tendencies will be given in the following section.

Example Problem Number One: Approximation of Complex Expo-
nential Function.—The first example is of a numerical approximation for
the complex variable transcendental function @ = exp (z). In this test
problem, the global domain of definition {} is defined as (Fig. 3)

Qe 0 =xs2, 0=y} . e (22)

The boundary conditions are specified along the global boundary, I', where
a 16-nodal point distribution is used on I'. The state variable ¢ (x, y) was
specified along I' except for a single nodal point where the stream func-
tion ¥ (x, y) was specified. Consequently, 15 values of §({x, ¥) and a single
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FIG. 3.—Geometry of Example Problem #1

value of ¢(x, ¥) remain to be determined on TI.
The functions ¢(x,¥) and {x,y) are given by

DY) =€ COSY ot (23)

YY)y = e SN Y. e e (24)

Comparison of model results to the solutions of Egs. 23 and 24 indicate
that the proposed polynomial model provides an improvement in ap-
proximation accuracy. Table 1 contains a comparisen of solutions to this
test problem.

Example Problem Number Two: Groundwater Phreatic Surface Ap-
proximation.—The estimation of the phreatic groundwater surface is of

TABLE 1.—Comparison of Modeled Solutions to Analytic Solution of Test
Problem #1

Node Unknown Cauchy Polynomial Anaiytic
number x ¥ variable mode} model solutiors
M @ | @ ) (5) (6) @
1 0 0 L -0.20 0.00 0
2 0.5 0 $ —-0.12 -0.00 0
3 1.0 0 v -0.07 -0.00 0
4 1.5 0 ) 0.02 0.00 ]
5 2.0 0 ] 0.57 —-0.00 0
6 2.0 0.5 ¥ 3.59 3.54 3.54
7 2.0 1.0 ¥ 6.15 6.22 6.22
8 2.0 1.5 v 7.29 7.37 7.37
9 2.0 2.0 ¥ 6.81 6.72 6.72
10 1.5 2.0 ¥ 3.96 4.08 4.08
1 1.0 2.0 L1 2.36 2.47 2.47
12 0.5 2.0 ¥ 1.39 1.50 1.50
13 0 2.0 b 0.78 0.91 0.91
14 0 1.5 [} 0.92 1.00 1.00
15 0 1.0 [} 0.84 0.84 0.84
16 0 0.5 b 0.88 0.88 0.88
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FIG. 4—Definition of Phreatic Surface Groundwater Problem Showing Nodaf Point
Placement

interest in many problems in groundwater flow (7). In this example
problem, a simple case of two levels of ponded water separated by a
uniform homogeneous soil is considered in which the objective is to pre-
dict the location of the phreatic water surface. The problem definition
and boundary conditions are shown in Fig. 4 (10).

The problem is complicated by the existance of a seepage surface such
that the flowlines and potentials of the problem satisfy the Laplace equa-
tion. The algorithm used for both the Cauchy integral and the complex
polynomial model is to define by trial and error values of y along the
phreatic surface until the computed ¢-values on the phreatic surface co-
incide with the y-coordinates at the specified nodal points.

The results of both complex variable theory analogs are compared to
the steady state free water surface (phreatic) presented in Vauclin, et al.
(10). Also compared are the domain model results for the steady state
condition presented in Nasasimhan (9). From the several comparisons
(Fig. 5), both complex variable theory models produced results of similar
accuracy with respect to relative error in the prediction of the free water
surface,

Due to the global matrix regeneration requirements of the algorithm,
the complex polynomial model was found to reduce overall computa-
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FIG. 5.—Steady State Free Water Location Using Varlous Methods and Complex
Variable Model Error
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ticnal effort by one-third of that required for the Cauchy integral model
to converge to the algorithm specifications. Such savings in computa-
tional effort becomes attractive when studying time dependent problems
such as in domain interface studies. Some classes of these problems in-
clude salt-water intrusion into ground water aquifers and moving
boundary soil water freezing problems.

Example Problem Number Three: Moving Boundary Problem.—The
moving boundary problem in naturally freezing soils has been studied
by many investigators. Hromadka and Guymon (3) developed a geo-
thermal model based on the Cauchy integral model of Hunt and Isaacs
(4). Due to an extremely slow moving freezing front, the classical heat
equation was simplified to a Laplace equation to be solved by the Cau-
chy integral method. In their model, application of a B.1.E.M. model was
found to be advantageous over a domain model due to a moving freez-
ing front which is modeled as an isotherm. Consequently, the Cauchy-
Riemann equations coupled with the B.I.LE.M. model gave values of heat
flux along the freezing front which are then used to relocate the freezing
front according to a simple temporal integrated balance of volumetric
soil-water phase change and net heat flux evolution.

In this example, the Cauchy integral model and the complex poly-
nomial model are compared in computational efficiency in solving the
moving boundary freezing front problem. Since results were very sim-
ilar, the main objective was to examine overall computational cost. The
problem domain and boundary conditions are shown in Fig. 6.

The Laplace equation is solved in the frozen area assuming no heat
flux below the freezing front. After computing the heat flux along the
freezing front, the change in coordinates is computed based on the time-

vT=0 \\

freszino frost (0°C)

FIG. 6.—Definition of Moving Boundary Problem Showing Nodal Point Placement
10m 10w 10m
L .
2m
/ -7 1
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—==u= Cauchy 1ntegrai model [Kromadka and £uymon, 1982}
wa-— Complex polynomial model

FIG. 7.—10 Year Simulation of Freezing Front Location for Soll Freezing Problem
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step size of one-day. Then, a new global matrix is developed based on
the new solution domain geometry.

The predicted freezing front locations from the complex polynomial
model differed less than 2% from results obtained from the Cauchy in-
tegral model. However, for a 10 yr simulation (Fig. 7) the complex poly-
nomial model used 35% less computation costs than the Cauchy integral
mode] used in Hromadka and Guymon (3).

Based on the example problems, a strong case can be made for the
use of the proposed complex polynomial model. A further sophistication
of the model is to include interior points in the polynomial determina-
tion or weighted residual methods. However, further research is re-
quired in order to better qualify these sophistications. :

StABILITY AND CONVERGENCE CONSIDERATIONS

Use of the proposed complex polynomial approximation method
(C.P.A.M.) for the solution of Dirichlet and Neumann problems requires
some insight into the stability and convergence capabilities of the model.
First, the problem considered must be based on a Laplace equation with
no singularities on I or in {}. Should singularities of the solution exist
in §, then the &{z) approximation must have a pole or an essential sin-
gularity in order to ultimately converge to the required solution, w(z).
Since the current model assumes that w(z) is analytic on " and in (,
there can be no singularities and

R o Rt (25)

in which n is the complex polynomial order, and it is assumed that the
nodal point distribution on I' is uniform such that the contour length
between successive nodal points is a constant for any order, n.

For the model based on the Cauchy integral theorem, the convergence
also follows from Eq. 25 when the nodal point distribution is again uni-
form on I'. In the C.P.A.M. model, the user must determine an appro-
priate order N such that

[@0a(2) = Dpe1(2)| <€ m=N,zel .o oo (26)

in which e is a tolerance, and it is assumed that this tolerance is appli-
cable on the domain, (). In Eq. 26, Cauchy’s convergence criteria for
converging power series is used to determine N.

The error of approximation in domain {} can be estimated by noting
from Eq. 26

[By(z) —w(z) <€ zel ... i s e (29)

Therefore, for some complex value (1) &},
1 A d
onla) = —— (b MMz (28)

2ni J 1 (z—a)

Consequently, the error at point () is given by

0(@) ~ (@) = — 9@ oz 1 95 Snl)dz 29)

2ni Jr(z—a) 2mi J (z—a)
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or in a simpler formulation,

1 - on(z)d -
[0(6) ~ bx(@)| = 5= W{l ......................... (30)
T

From Eqs. 27 and 30,

. el
|w(u)—w~(a)i$2—ﬁi e e et (31)

where L = arc length of the contour I'; and R is the smallest distance
from point () to contour I". It should be noted that Eq. 31 does not imply
that huge errors must occur close to the boundary, T, but that the error
in the interior of T is bounded by the order N for the complex poly-
nomial used. Obviously, since w(z) and by necessity &y(z) are both an-
alytic on T and in , then £(z) = w(z) — @x(2) is analytic on I and in
€ and must therefore have its maximum modulus |£(z)| on I" (for a non-
constant w(z)). Therefore,

lo(@) = on(@) <€ @EQUT ... i it aiiiainens 32)

One does not always know whether a problem includes a singularity
and, consequently, whether w(z) will converge. Several nodal densities
may be requierd on I in order to ascertain whether the Cauchy con-
vergence criteria is satisfied. Depending on computer roundoff error
problems, a high order approximation (e.g., N = 40) may be unobtain-
able and yet the approximation error is unacceptable. In such cases, the
C.P.A.M. model fails and other techniques should be used.

The writers have found that the C.P.A.M. is sensitive to nodal point
placement and that lower order C.P.A.M. models can be developed which
meets the acceptable accuracy requirements of Eq. 26 depending on cer-
tain concentrations of nodes on I'. In contrast, instability can occur for
irregular nodal placement on T for even high polynomial orders.

CONCLUSIONS

A new numerical model of the well known Laplace equation is ad-
vanced. The method is based on a complex variable polynomial expan-
sion which satisfies the specified boundary conditions. The method is
related to B.I.E.M. techniques, but offers a significant reduction in com-
putational effort.

An attractive application of the method is to moving boundary prob-
lems such as in two-dimensional soil-water freezing or thawing. In this
class of problems, the governing time-dependent P.D.E. is simplified to
a time-stepped quasi-steady state problem. The solution of the simpli-
fied P.D.E. provides state variable normal flux values along the moving
boundary which can be used to calculate the corresponding boundary
displacement. This simple approach can be extended to other two-di-
mensional moving boundary or interface problems such as salt-water
ground water intrusion studies or problems of coupled heat and soil
water flow in freezing soils.

338



APPENDIX.—REFERENCES

10.

. Brebbia, C. A., “The Boundary Element Method for Engineers,” Pentech Press,

1978.

. Dettman, J. W., “Applied Complex Variables,” Macmillan Co., 1969.
. Hromadka, T. V. I, and Guymon, G. L., “Application of a Boundary Integral

Equation to Prediction of Freezing Fronts in Soil,” Cold Regions Science and
Technology, Vol. 6, No. 2, 1982, pp. 115-121.

. Hunt, B., and Isaacs, L. T., “Integral Equation Formulation for Ground-water

Flow,” Journal of the Hydraulics Division, ASCE, Vol. 107, 1981.

. Lennon, G. P, Liu, P. L. F.,, and Liggett, ]. A., “Boundary Integral Equation

Solution to Axisymmetric Potential Flows: 1. Basic Formulation, 2. Recharge
and Well Problems in Porous Media,” Water Resources Research, (15) No.
5, 1979, pp. 1102-1115.

. Lennon, G. P, Liu, P. L. F., and Liggett, ]. A., “Boundary Integral Solutions

to Three-Dimensional Unconfined Darcy’s Flow,” Water Resources Research,
(16), No. 4, 1980, pp. 651-658.

. Liggett, J. A., “Location of Free Surface in Porous Media,” Journal of the Hy-

draulics Division, ASCE, Vol. 103, 1977.

. Liggett, J. A., and Liu, P. L. F,, “Unsteady Free Surface Flow Through a

Zoned Dam using Boundary Integration,”” Proceedings of the Symposium on
App. of Comp. Methods in Engrg., 1979.

. Narasimhan, T. N., “A Unified Numerical Model for Saturated-Unsaturated

Groundwater Flow,” Dissertation offered to the University of California at

Berkeley, in 1975, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Vauclin, M., Vachand, G., and Khanji, J., “Two-Dimensional Numerical

Analysis of Transient Water Transfer in Saturated-Unsaturated Soils,” Com-
uter Simulation of Water Resources, (Venteenkiste, G. C. ed.), North-Hol-
nd Pub. Co., 1975, pp. 299-232.

339



