Nodal domain integration model of two-dimensional

advection-diffusion processes

T. V. HROMADKA I

Civil Engineering, University of California, Irvine, CA 92717, USA

The nodal domain integration method is applied to a two-dimensional advection-diffusion process in
an anisotropic inhomogeneous medium. The domain is discretised into the union of irregular triangle
finite elements with vertex-located nodal points and a linear trial function is used to approximate
the governing flow equation’s state variable in each element. Non-linear parameters are assumed
quasi-constant for small durations in time in each element. The resulting numerical model represents
the Galerkin and subdomain integration weighted residual methods and the integrated finite
difference method as special cases. Both Dirichlet and Neumann boundary conditions are accom-
modated in 2 manner similar to the Galerkin finite element approach.

INTRODUCTION

Optimum numerical methods for the solution of the time
dependent partial differential equations such as occur in
the theory of diffusion processes and advection-diffusion
processes in porous media flow are the subject of a sub-
stantial body of literature,’»* The overwhelming preference
in the literature is towards the finite difference and finite
element numerical approaches. In comparison between the
finite element and finite difference methods, three main
advantages are generally cited in the literature for preferring
the finite element technique to the finite difference one
(although several cases exist which determine identical
numerical analogs), namely

(i) zero-flux type boundary conditions {i.e, Neumann}
are handled *naturally’ without the need for special
flux-boundary approximators as required in the
current finite difference methods;

(ii} the size and shape of finite elements can be variable
throughout the solution domain;

(iii) inhomogeneous andfor anisotropic domains are
easily accommodated by a finite element analog.

In this paper it will be shown that by the proper
definition of nodal domains as the set of set-intersections
of a finite element and subdomain discretisation of the
global domain, a finite-element matrix system can be
determined for a finite difference or subdomain integration
numerical analog similar to the Galerkin finite element
matrix systems. These resulting element matrix systems
will also be shown to satisfy Neumann and Dirichlet
boundary conditions identical to the Galerkin numerical
analog, and also accommodate anisotropic and inho-
mogenecus domain characteristics.

Additionally, it will be shown that for a linear trial
function estimate of the state variable in each finite
element, the resulting element matrix systems for the
various numerical methods considered can be represented
by a single nodal domain integration finite-element matrix
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systein by the appropriate specification of a single constant
parameter.

A two-dimensional advection-diffusion process in an
inhomogeneous anisotropic medium is examined. The
finite element configuration assumed used to discretise
the global domain and boundary is the triangle element
with three vertex-located nodal points (linear trial function
assumed in each finite element).

Since the triangle-clement configuration has been
studied for an isotropic inhomogeneous diffusion process in
a previous paper® only the anisotropy of the medium and
the inclusion of (x, y) advection components will be
addressed in this paper.

GOVERNING EQUATIONS

A two-dimensional advection-diffusion process in an in-
homaogeneous anisotropic non-deformable medium without
sources or sinks may be generally expressed by the partial
differential equation:

[K or UT]+ i [K or WTJ CaT (x, e
N N N o =L, X,
¥ dy Y oy ot ‘

(1)

where (x, ») are spatial coordinates in global domain £2;
¢ is tme; T is the state variable (e.g. temperature, or
concentration of a conservative specie); U/ and W are the
(x, y) related advection components {(e.g. fluid velocity);
(Ky =Kyx, K, =K,y) are assumed principal axis values of
conductivity (e.g. heat conductivity or Fickian dispersion;
and C is a capacitance coefficient (e.g. volumetric heat
capacity). It is assumed in subsequent model development
that:

{={0e,y, 1), for (€{K, K, UWCT} (2)

In vector notation, (1) may be written as:

. = aT
fqd[‘:fC-;dA (3)
f
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where T" is the boundary of Q; dr is the outward unit
normal vector to [, ||dIl"'|| = d": and

o

T A\ aT .
5= (Kx - UT) i+ (Ky < w:r) i )
ax dy

For an arbitrary n-density nodal point distribution in
£} with associated subdomains R,, with boundaries B,,,
the following subdomain definitions are assumed:

(]
=) Rp (3)
m=1
i.e. £ is the union of subdomains R,,,;
Ru=R, =R, VB, (6)

i.e. each domain is defined as the union of domain and
boundary;

R, NR=8B,,NEy (7)

i.e. each intersection of subdomains is the intersection of
boundaries, and

(xmsym)eRm; (xmsym)esza
Then (3) may be replaced with the corresponding sub-

domain equations:
Ja-at- [aa ©)

m¥*k (8)

r B,
oT oT

J‘C——dA= JC—dA (10)
ot at

[y Ry

For a finite element discretization elements Qe are defined
in £2 as follows:

Q=uqQ, (11)
Q.=Q, U, (12)
A set of nodal domains §;” is defined by
@ =Ry, N} (13)
A compact cover of Qe is given by:
Q=0 JjES. (14)

where S, is the set of subscripts defined by:
Se={719N Q. #{0% (1)

A finite element matrix system equivalent to the governing
domain equation (1) is generated for finite element £, by:

. aT
Uq.dr‘——fca—t—dA}z{O}, jES.  (16)

Ly Q;

Likewise, a subdomain integration statement for (1} is
generated for subdomain R,,, by combining (9} and (10):

{fz}-d"f"— ngM}={O} an
B, Rpm

Expanding the transport integral of (16) gives:

O aT -~ aT—-\ - o —
J-q-dF:J‘[Kxé i+K, —j - UTi—-WIj|.dr
. ax oy

Ly y; (18)

or

—~f [UTi + wij]-dD

I;ynTe

+ f q-dT (19)
ry-- I‘fﬁf‘e

where feEboundary of finite element fle. The first
integral in the expansion of (19) satisfies Neumann boun-
dary conditions on I', or preserves flux continuity (due to
conduction processes) between finite elements. In the
global assemblage of €2, the first integral in the expansion
of (19} also satisfies Neumann boundary conditions on the
discretised approximation of global boundary I' by [,
From (19), the element matrix system of (16) is given by:

Ua-d—f"—» J’[UT?+ w7 dl
T;—I;NTe TjNT,

aT
- fcgdA}={0}, €S, (20)
ﬂ]‘

NUMERICAL MODEL

For a finite element cover §2, (of global domain £2) com-
posed of triangle elements with three vertex located nodal
points,! the state variable T is assumed approximated
within each £, by a linear trial function:

Tx,p,0)=Tox,».0), (.)€, (21)

where
Tolx,y, 0)=Li(x,»} Tj(x;, ¥, ) (22)
where the L; are the usual area shape local coordinates
L; Eﬁ 23
A€

and f.'!"‘r are nodal values of Te at nodal points j; and A is the
area of triangle finite element £2,.

Galerkin finite element analog

For a linear trial function 7, in finite element €2, the
Galerkin method of weighted residuals approximates (1}
in £2, by:

a8 a7, N 9 oT, . aT,
— Ky — ~UT |+ — K, —— Wl |—-C—
~ 9x ox Ay dy ar

Q.
x L;j d4 =10} (24

Solving {24) genetrates an order 3 element matrix system
when (24} is quasilinearised by assuming non-linear para-
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meters constant for small timestep At;* thus (24) is quasi-
linearised by:

ar . of. 1 e[ oL

— Ky — = UT, | +— K;——WQT]
~ lox ox oy ay
2,

AT, _
—C ;}L,-d/l ={0} (25)

where it is assurned that parameters {(0<7
+ {(f), and (8/07) $ () = 0.

<Ay =¢°

From (22):
o7 (z:aLfT) : saTit vyt ya Tl (26
ax ax ! —2Ae Yazli T yiali+y, 1] (26)

which is a constant in Qe, and y; =y y;
The Galerkin (x, ¥) convective term components of (25)
are given by

R
e+ = f{a(ufre)+$(were)}LfM (27)
2,

For the linear trial function assumption:

oT oT
S P
ox 3/
Qe
Combining (26} and (28) gives:
e e
C; + Ci = z’ DuhityehtyahGic+ 767

X X3+ x5 T+ X2 T J¢ (29}

The Galerkin conduction term components of (23) are

given by:
JES) Sls 5 oo

which after integration by parts gives:®

aT, dN; aT. an;
— I{K;’_e_f_f.Kﬁ_e __f} (31)
P ox 0x ay oy
)

where in {31) Neumann or specified boundary conditions
are assumed on global blundary I', and conduction flux
continuity is assumed between £2,.

Equation (31) results in the symmetrical element con-
duction matrix system:

KET + KSTO=

K [(¥3:)  —(Pisya) ra)® (DY
4_Ae (J’ia) —(Y12V13) 7
Symmetrical %Ly 1 \N

(32)

kS [(x33)  —(x13%23) (1xs)]® ()¢
N a; (x13) —(x13%13) 1;
L Symmetrical xL)y 1\

where
Af = [ dA
fe
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Finally, the Galerkin capacitance term of (25) is deter-
mined from:

[fc" aT"’L d4 33
. or (33)
e

which can be simplified as (for C° quasi-constant during

small timestep Af)
o7,
e { — Lj dA} (34)

Solution of (34) results in the symmetrical element capaci-
tance matrix:

at
gt 21 1 oT,
Pe(2) = Sl 2 S (35)
N 11 Py
Bt

The resulting element matrix system approximation of
(1) on £, can be written in the form:

e

=10}

(36)
Where the (K§ + K$), (CZ + C5) and P°(2) matrices are
given by (32), (29) and (35), respectlvely
Assemblage of the finite element matrix contributions
into a global matrix systemn generates the Galerkin finite
element numerical approximation of (1) in £ for an
assumed linear trial function 7, in each £,. By definition,
the global system satisfies both Neumann and Dirichlet
boundary conditions on global boundary, I’

aT
(KSTC + K5T9) + (CLTC+ CST9) + PY(2) -

Subdomain integration analog
The subdomain version of the weighted residuals
approach approximates (1) in £ by:!

Gl oT a or ar
(M[K —=UT|+ K, ——Wr —C—)
ox ax ay ay ot

Iy
x Njdd =0  (x,y)€Q 37
where
11 3 ER
].E{ )€ (38)
0, otherwise
and
=J R; (39)
i=1

From (19) and (20), (37) may be rewritten with respect to
the finite element cover £2, of & as (Fig. 1)

f g-dlh— J‘ [UTi + WTj)-dT =
Ij-Ipnle TNl

oT

J C—dA JjES, (39)
at

2y
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T

@ =
Figure 1. Nodal domain integration — model geometry in
triangle finite element §1,

where the set of nodal domains §2; provides a cover of each
triangle finite element £2, as defined by the partition of
Qe from the triangle medians.? Equation (39) satisfies both
Dirichlet and Newmann boundary conditions similar to the
Galerkin approach.

For a linear trial function T, in £, the x-direction con-
vective term is determined from (37) and (39) by:

aT, o7, aT, A°
fU‘fJM=UeJIM=UeJ—, jES,
ax ax ax 3

where 87T, /0x is constant in £2,,.
Equation (40} is evaluated with the aid of Fig. 1 where
an intermediate domain boundary variable T is given as:

7 =T, + 2% (T, - Ts) (41)

Y23

which upon rearranging is:

T —T)=yulityaltyeTs (42)

Comparing (40) and (42) gives:

a7, T'—-1)Ax

JUQ Ty e T A0
ax Ax 6

Q;

Therefore, the subdomain integration model gives:
. oT, e i
U 8— d4 = ”()‘{J"32T1+J/13T-z+y217"3}, JES,
X
Q; (44)

where in (43) the product Ax(ys,) = — 24°.

Comparison of (44) to (29) shows that the Galerkin and
subdomain integration numerical approaches determine
identical x-direction convective term element matrices,
C%. The y-direction convective term element matrix C5,
is derived analogous to the above. The anisotropic conduc-
tion term (linear trial function approximation 7T, for T
in 'SALe) determines a symmetrical element conduction
matrix system identical to (32). Finally, Hromadka er /.,
determine the subdomain finite element capacitance

matrix in §2, for a linear trial function T, as:

ot
. 227 7
of,  C4° o7,
c*—<da = 7 22 75 @s)
af 108 ot
3T,
at

The finite element §2, contribution to the solution of (1)
on global domain £2 is given by:

oT?
(KET+ KGTé) +(C5TA+ CE T ) + PE(22/7) v ={0}
(46)

Finite difference analog

Hromadka ef al.® show that the integrated finite
difference solution® of (1) without advection is identical
to the linear trial function subdomain integration approach
except that the element capacitance term is given by:

ce]l O O
Pé(o0) = 010 47)
0 0 1

Thus, the finite difference numerical approximation for
equation (1) in £2, according to Spalding® is given by:
oT*
(KT KT+ (CLTe 4 CT) +P(oe) — - =20]
(48)

In this case, it is important to note that the finite difference
global matrix system resulting from the combination of all
element matrix contributions satisfies both Neumann and
Dirichlet boundary conditions according to (19) and (20).

Nodal domuain integrarion

Hromadka et al.,® develop an extension of the sub-
domain integration version of the weighted residuals
process resulting in an element matrix system for approxi-
mation of (1) in £, similar to (36), {(46) and (48) except
that the element capacitance matrix system is defined by:

e O 1

Pe[n =—— 7l 1 49
[A()] 30+ 2) 7le) : (49)
i 1 1)
where R(f) is defined by:
OSB3I T<Se (50)

in order to preserve symmetry in P°[#(r)]. It was suggested
that %(f) be varied between elements €, and with respect
to time. Some methods of computing 7;(f) are examined
for a one-dimensional advection-diffusion problem in
Hromadka and Guymon.® Using (49), the nodal domain
integration model for (1) in £, may be written as:

2

=10}
(51)

where 7(z) = (2, 22/7, =) gives the Galerkin finite element,
subdomain intepration, and finite difference numerical

(KETS+KET®) + (CST+ CET®) + Pe [n()) ”
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approximations of (36), (46} and (48}, respectively. Similar
glement matrix systems have been developed for solution of
(1) on irregular one-dimensional elements® and irregular
two-dimensional rectangular elements;” for both finite
element configurations, fi(f) = (2, 3, o) gave Galerkin finite
glement, subdomain integration, and finite difference
numerical approximations for an assumed linear trial
function within each finite element.

CONCLUSIONS

The nodal domain integration model for the approximation
of two dimensional advection-diffusion processes in a in-
homogeneous anisotropic medium is developed. Using a
triangle element, the global domain is discretised into a
finite element domain and boundary approximation, and a
linear trial function is used to approximate the state
variable in each finite element. A finite difference analog
is developed according to Spalding,* and a Galerkin and
subdomain weighted residuals analog are developed accord-
ing to Pinder and Gray.! Comparison of these numerical
analogs to the resulting nodal domain integration method
indicates that the Galerkin, subdomain integration, and
finite difference methods can be represented by the nodal
domain integration numerical statement in each finite
element by the specification of a single constant parameter
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in the nodal domain integration clement matrix system.
The resulting nodal domain iniegration analog (and
accordingly the finite difference and subdomain integration
numerical analogs) is shown to represent both Neumann
and Dirichlet boundary conditions on the global boundary
similar to the Galerkin weighted residuals analog.
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