Mass lumping models of the linear diffusion equation
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The nodal domain integration method is used to develop a numerical model of the linear diffusion
equation. The nodal domain integration approach is shown to represent an infinity of finite element
mass matrix lumping schemes including the Galerkin and subdomain integration versions of the
weighted residual method and an integrated finite difference method. Neumann, Dirichlet and mixed
boundary conditions are accommodated analogous to the Galerkin finite element method. In order to
reduce the overall integrated approximation relative error, a mass matrix lumping formulation is
developed which is based on the Crank-Nijcolson time advancement approximation. The optimum
mass lumping factors are found to be strongly related to the model timestep size.

INTRODUCTION

Engineers and scientists are increasing their reliance on
numetical methods to approximately solve differential
equations of boundary and/or initial value problems such as
occur in the study of transport processes. Usually, the
numerical approaches to finite difference or finite elements
are employed. These techniques discretize an assumed
continuum-domain of definition into finite elements or
contrel volumes, and the governing partial differential
equation (PDE) is approximated in the continuum by trial
functions which fully or partially satisfy the PDE boundary
conditions. Choosing suitable peints called ‘nodes’ within
the several finite elements or contro] volumes, the variable
in the PDE is written as a linear combination of specified
interpolation functions and the values of the variable or its
various derivatives at the nodal points. Using variational or
weighted residual methods, the governing flow process PDE
is approximated by a system of linear equations as
functions of nodal point values.

There are numercus numerical approaches available;
however, usually either the Galerkin finite element or
finite difference methods are used to solve PDE’s such as
diffusion problems.' Alternative numerical approaches
have been investigated by several workers. Narasimhan®™*
examined fluid flow in porous media and the diffusion
problem by a control volume approach which is based on a
finite difference method. Patankar® also presented a
triangular finite difference control volume model for a heat
transfer diffusion problem. Both modeling efforts can be
expressed in a finite element matrix form such as described
in Hromadka et al.®

The control volume models are analogous to finite
el¥ment mass matrix lumping models such as described by
Kikuchi,” That is, the control volume approach essentially
results in the formulation of a finite element mass matrix
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which is lumped or diagonal. Fried and Malkus® use
numerical integration to form mass matrix lumping schemes
with the optimal rate of energy convergence retained. Other
formulations include a consistent diagonal mass matrix
finite element model® which also produces a diagonal mass
malrix similay to the lumped class. This type of formulation
is extended to two-dimensional finite elements using
orthogonal base functions.'® Another examination of mass
lumped and consistent mass matrices is given by Suranal?
for the special problem of a three dimensional structural
beam element.

The above mass lumping models and conirol volume
approaches can be shown to be essentially analogous to the
basic integrated finite difference method developed by
Spalding'? for transport problems. The integrated finite
difference method is oftentimes acclaimed for its ease of
model developed and simple solution of the integrated
version of the governing PDE.™ Additionally for many
problems, the finite difference method (often referred to
as the control volume approach) may produce ‘better’
results than the Galerkin finite element method although
the opposite can be true depending on the class of problem
being solved.'® The subdomain integration method is also
referred to as the control volume approach and can be
shown to result in another mass matrix which is con-
sistent,’® but yet is not diagonal. Thus the modeler is left
to choose between several different numerical modeling
methods which are in reality essentially similar to each
other when written in a simple finite element matrix
form.

The main objectives of this paper are twofold. First, the
paper will briefly review the development of a one-dimen-
sional nodal demain integration {NOI) numerical model of
the diffusion problem. This mode! development is derived
in detail in previous papers,®'” and only the major steps of
the derivation are included in this paper for the reader’s
convenience, Extension of the one-dimensional model to a
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two- and three-dimensional formulation foliows from the
one-dimensional model derivation. Each of the resulting
numerical models are shown to represent the often-used
Galerkin and subdomain integration models and an
integrated finite difference model as well as an infinity of
other nodal weighting schemes. The global matrix systems
are shown to satisfy both Dirichlet, Neumann and mixed
boundary conditions similar to the Galerkin approach.

The second objective of this paper is to determine a
nodal weighting relation which has a high probability of
reducing integrated relative error. The proposed nodal
weighting (mass lumping) method was determined by curve-
fitting numerous optimized mass-lumping factors developed
by trial and error in the comparison of approximation
results to analytical results for several classical linear PDE
boundary value problems where analytical solutions exist.
Based on the comparison of modeled results and corre-
sponding errors, general patterns were identified which may
fead to the best numerical solution to the general problem.

The proposed mass lumped scheme is based on the sub-
domain integration {control volume) approach as applied
to an actual solution trial function of the governing PDE.
The trial function assumed is the principal eigenfunction
of the Fourler series expansion solution to a special case of
the diffusion problem which approximates the control
volume in the global medel. Since all but one of the eigen-
functions essentially disappear in the solution of the PDE
after a short time, the resulting model solution generally
produces better approximations for the diffusion problem
than any of the more popular domain numerical methods.
The diffusion problems considered are only for the linear
class of PDE. Extension of nonlinear problems is not
straightforward due to the evaluation of a nonlinear
diffusivity at the boundary of the control volume. Further
research is required to extend these methods to nonlinear
problems.

All of the above models can be written in terms of a
single nodal domain integration numerical statement for
each nodal point value. The numerical statement is written
as a function of a single mass matrix lumping factor 7, and
tesults in a representation of domain models in finite
element matrix form.

DOMAIN APPROXIMATIONS OF PARABOLIC
EQUATIONS

In this section, a brief summary of domain numerica) model
derivations is presented for the well known Galerkin finite
element and the integrated finite difference models. Also
presented is the subdomain integration model derivation.
Although the derivations are well known, some particular
steps are presented here in order to determine some of the
many similarities between the various models. Each numeri-
cal model is then written in a finite element matrix form
which indicates the degree of mass lumping each model
involves. All of the models are then combined into one
unifying finite element matrix formulation {or nodal
domain integration model} as a function of the degree of
mass matrix diagonalization. The resulting NDI statements
represent an infinity of possible mass matrix lumping
models of which the more popular domain methods are but
special cases. In the following section, an improved nodal
weighting scheme is developed which, for the problems
tested, reduce integrated relative error for one-dimensional
linear diffusion problems.
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Galerkin method of welghted residuals
The general parabolic equation describing a linear one-
dimensional diffusion process is

3 3%

a 0, xe€fl 1
9t ox® @

where ¢ is the volumetric concentration; (x, ¢) are spatial
and temporal coordinates; « is a diffusivity parameter; and
{2 is the problem global domain with global boundary T

The finite element approach™ discretizes the global
domain into the union of finite elements by

Q=uQ° (2)

The domain is expressed as the union of domain and
boundary

Q=ur (3)
Qe=qeure @

where
980981'1::['\601'\84'1 (5)

The PDE variable ¢ is assumed approximated in each £
by a linear trial function ¢° defined by

PP =EN(x) of (6)

where N;(x) is an assumed linear polynomial shape function
of nodal point § and gbf is a nodal point value associated to
element Q° The Galerkin weighted residual process
approximates (1) in each £2° by setting
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where boundary conditions of Neumann or Dirichlet are
assumed on global boundary T. Integrating (7) by parts

gives
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To conserve mass-flux continuity between °, it is assumed
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For Neumann or Dirichlet boundary conditions specified
on giobal domain I', the Galerkin analog for local element
£2° reduces to
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For the linear trial function ¢° in £2°,

o= of = (l:;y) b+ (;1) Doy (12)

where p is a local coordinate in £°, dy=dx; [*=(x, 4, —
Xe); (B Ge+1)=9¢% and x, is the spatial coordinate of
node ¢, Substituting (12) into (11) gives a Galerkin analog
for local element Q°

3¢° AN, B
= +of = N|dQ, j=e, e+
dx dx o
ot
{(13)
For ¢° linear, all gradients are constant giving
dA;
o—ﬂ f Lo+ o R_[ ¢N AR, j=e, e+
(14)

In matrix notation, the linear system of equations approxi-
mating the governing PDE in local element QF is

Y T A d
S‘fcz;%P‘?{z]c,tve:;'p IJdn+ae—f¢eMdQ
ox J_ dx ar J,

where;
L 11 =
S=l_“[—--1 1] 1e)
SR N ()
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Subdomain integration
The subdomain integration method discretizes the global
domain £ into subdomains (control volumes) where
Q=UR; (18)

Generally, the subdomains are defined such that R; is some-
what centered about nodal point j and

X, ER; (19)

X GR;, k#E] (20)
RiMRy=NTy (21)
R;=R;U T} (22)

For the one-dimensional patabolic PDE problemn, £ is
discretized into subdomains which overlap continuous
finite elements from mid-element to mid-element.

The subdomain integration weighted residual approach
averages the approximation error in estimating the govern-
ing PDE in R; by the formulation

9 3
ng—“: —aa—f)wfdszzo (23
2
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where boundary conditions of Neumann or Dirichlet are

R
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Figure 1. One dimensiongl discretization of global domain
Q showing nodal points (1), finite elements Q°, subdomains
R;, nodal domains §X and nodes ®

specified on global boundary I'. From the discretization
of £,

% B 2% 2
[Garoq)ormn= [ (Famei) ey

0 Rj
where
] s X e RJ,
w = ) (25)
0, otherwise
Thus,
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The subdomain and finite element discretization of £ can
be rewritten in terms of a nodal domain ¥ discretization
of £ by

QY =Q°NR, (27)

A one-dimensional discretization of global domain £ by
each of the three approaches are shown in Fig. 1. From the
definition of the nodal domain, a subdomain R; would be
the union of each £2f, that is

Ry=0Qf (28)
and the finite element £ is given by
Qf=uQf, jes° (29)

where S¢ is the set of nodal point numbers associated to
finite element £2¢

CEIQINO] D) (30)

Consequently, a finite element matrix system can be de-
termined for a subdomain integration nodel by noting that

3% B J‘ 3% B
J (—a;‘g Qa) de) = (gx— Oig;) d&2 (31)

R]' QI

In terms of finite element £°,

3% a¢) (’% a¢) .
[(ax2 Oz;; wde&J‘ 5_2—045— ds<i, JES

J L
(32)
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Integrating equation (32) by parts gives:
9% 8 d a
J Gamesea= ()l e G
e ax or dx Fj? nré 0x

82j
)
- jafdg, jES® (33)
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where S°=(e, e+1); and I is the boundary of nodal
domain €2f. Similar to the Galerkin approach, flux con-
tinuity is assumed between finite elements and Neumann or
Dirichlet boundary conditions are assumed on global

boundary T giving
0¢ o
2l e
e \OX I‘fﬁl"e ax
Thus, the subdomain integration analog in local element Q¢
reduces to
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where the £ notation in (35) irrplies an equality due to
(34). For (a, ¢) = (¢, ¢°) in ¢ during a small interval of

time Af,
HE a de°
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giving the element matrix system
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(37)
where §€ is as defined in (16), and
Pe[3] = @[3 1] (38)
8 L1 3

Integrated finite difference approach

The integrated finite difference is analogous to the sub-
domain integration approach for a linear trial function ¢°
in each element £ except that

J 9% d2=¢y; f a2 (39)
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Consequently, the element matrix system for solution of
the governing PDE in Q¢ is

s ppetiee (%)

ré-rjart ot

where 5 is defined by (16), and

i I I

Nedal domain integration

For the one-dimensional parabolic PDE, the three
domain numerical approaches derived above can be repre-
sented by a single element matrix system'?

A B O R T aflf
e T
Pl = bord  2mt1]

X [ne : ]{¢e ] (42)
U npd\e iy
where 7, is an element mass lumping factor and determines
the Galerkin, subdomain integration, and integrated finite
difference domain analogs for n,=(2, 3, ).

For the linear trial function ¢° in an irregular triangle
and tetrahedron finite elements, the appropriate element
matrix systems for two- and three-dimensional linear
diffusion problems are readily determined.”® In the two-
dimensional triangle element matrix system, Fig. 2, the
two-dimensional element matrix system is

S3¢° + P{[n.] ¢°=0 (43)
where the subscript notation indicates a two-dimensional

matrix system, and where S5 is a Galerkin approximation
for the diffusion component in element £°, and

ofd® e 11
P5[ne] = ————|i 1 44
2 [Mel 3[net 2] Te (44)
1 TNe

where A%=area of triangle element, and where 7,=(2,
22/7, =) gives the Galerkin, subdomain integration, and
integrated finite difference analogs. As in the one-
dimensional problem, Dirichlet and Neuman boundary con-
ditions are accommodated analogous to the Galerkin
method.

For the three-dimensional tetrahedron element (Fig. 3),
the appropriate element capacitance matrix is given by

e 1 1 1
Ve 11 g
PS[n] = e ’
4. +3][1 1T 7
| 1 I 7

(45)

where V€= volume of the tetrahedron element, and where
n.=1(2, 75/23, o) gives the Galerkin, subdomain integra-
tion, and integrated finite difference analogs. The element
diffusion component is given by the usual Galerkin approxi-
mation in element £2°,
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re
' (2)
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Figure 2{a). Finite element Qf with three vertex locared
nodal points

(3)
(1)

Figure 2{b). Finite element partitioned into nodal domains

Figure 2({c). Subdomain R; as the union of all nodal
domgains associated fo nodal point j

IMPROVED MASS MATRIX LUMPING FACTOR

In the previous section, a ND! model s developed for
several of the commeon finite element configurations, The
NDI statement is found to represent several numerical
approaches by the variation of a mass lumping factor.
Numerous mass lumping factors can be determined de-
pending on the approach used to approximate the PDE.
Zienkiewicx'® discusses mass lumping systems and also
includes discontinuous trial function approximations in
each finite element.

A brief examination of stability and convergence con-
siderations for the family of domain models is given in
Appendix A. From Appendix A it is concluded that if a
Galerkin analog (3=2) and an integrated finite difference
analog (p=rc°) arc stable and convergent, then so is the

(1

MIDPOINT OF LINE [{1),{40]

TRIANGLE FACE
{1,3,41 CENTROID

(4)

X" CENTER
OF GRAVITY—" o
——”—‘

\

(3)

Figure 3. Nodal domain Q5 geometric definition in finite
element ¢

entire range of mass lumped matrix finite element models
(2<n<omy,

Approximating complex finite element trial functions
with a lower order trial funcrion generates a complete
spectrum of possible domain finite element models which
can be included into the variable mass lumped formulation.
For example, two common approximation norms used in
developing such lower order trial function models are the
relative error and inner-product norms. Both of these
approximation norms can be used to formulate numerous
specialized mass lumped finite element models based on
some assumed function configuration within each element.
Such considerations suggest that an infinity of possible
domain numerical models may be produced, each model
perhaps providing the ‘best’ approximation to a particular
PDE or a specific class of boundary value problems.

Hromadka and Guymon® developed a variable mass
lumped matrix model which aflowed a variation of the mass
lumping factor with respect to time and between finite
elements. However, this variable n scheme involves frequent
global matrix regeneration, which results in a relatively high
increase in computational effort over a constant n-factor
model. Consequently with an infinite number of potential
constant-n domain models to choose from, the selection of
the constant mass-lumping factor which has the highest
probability of producing the best numerical approximation
for diffusion problems is needed.

This is the main objective of the paper: to develop such
a constant 7 factor which has the highest probability of
reducing the relative approximation error. It can be easily
shown that any n-factor model provides a ‘best’ approxima-
tion for some region of a problem domain or for some
portion of the simulation. For example, Fig. 4 shows the
relative error from various masslumped models in the
approximation of a classical linear diffusion problem. It
can also be shown that these approximations fail to succeed
to be the ‘best’ depending on the problem being con-
sidered.
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Figure 4. Example integrated relative error in modeling
one-dimensional diffusion problem (n=2: Galerkin, nn=3:
subdomain integration; n=vo: finite difference, n(t)=
variable NDI model®)

In this paper, the approach used to determine an opti-
mum mass weighting factor for the one-dimensional NDI
model of equation (42) is based on the Fourier series
expansion of an assumed boundary value problem in each
control volume of the global domain, For a finite interval
R; (control volume), the usual processes of normalization
reduces the governing PDE to the solution of an equivalent
PDE on a normalized unit interval

%0 _ % €]0, 1) 46
— =— X
axt  or 1. (46)

wherte 6 is a normalized variable for the PDE state variable,
and (x, ¢} is now defined as normalized space and time. It
is assumed in equation (46) that 0(x=0)=6; .|, 6(x=
0.5)=6; and 8(x=1)=0;,, where 6, are the usual nodal
values.

The NDI model is based on the well known Crank-
Nicolson time advancement procedure to approximate the
time derivative of equation (46), The nodal equation for
the solution of 8; is therefore

At ; ; i ] f 4 gd
SRl 285 6T + (6]~ 201+ 6]
ki
1R i / / /
= T 0+ e — )
7
@3 —0)) @

where the normalized length, |R;li=4; i is the timestep
number; and 7; is constant during normalized timestep Atz
Equation (47) evaluates all modeled flux terms at the mid-
timestep. For other time derivative approximations, such as
forward or backward step differencing, a similar PDE finite
difference statement can be developed. An exact solytion
of the governing PDE at this mid-timestep is

Bix,e)=— 30 _ 120+ 8, ,) sin nx e e

T rh_Dx+8_, (48)
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where € is noxmalized time measured from the mid-time-
step; and where 8=1(0}+ 85*1). Equation (48) is a solution
to the governing PDE. If it is assumed that all effects of a
moving boundary value at x=(0, 1) are equivalent to
holding & constant at the mid-timestep boundary values,
then (48) represents an exact solution to the assumed
boundary value problem.

The exact Fourer series expansion solution to the
proposed boundary value problem, (48), is a good approxi-
mation for diffusion problems where the initial condition
is a sinusoidal curve. Additionally, (48) is the principal
eigenfunction of the boundary value problem since the
remaining series terms quickly reduce to zero,*

Holding the boundary values of # constant at the mid-
timestep allows a simplification of the NDI nodal equation
to

Ar _ S IR,
— [+, ) —(F+ 8y = —
”Rj” [(; 1 ;+1) ( 7 7 )] 2("?j+ 1)
x {2n,(8;"1 —6})] (49)

Since (48) is assumed exact,
.1 —At _ - ~ 2
Oy= 9(—’ m): %(911 2t G y)e" Al

301+ G (50)
. {1 Ar ~ _ o o2
6}+1=9(_,_)~;mé(gjml-,zgj_‘_9j+1)e—-nAt[2
2 2
t3@G 1t G4)

Substituting (50) into (49) and simplifying gives the NDI
mass lumping factor

N { 4AH(] + ¢~

- )= {—- —
KA e AAr(1 + e~ ™A1
where the normalized timestep Az is related to the global
maodel timestep At by

} (51)

Ata
Ar = -
4RI

Normally As is assumed constant for the entire numerical
simulation and a single n; is determined for each finite
element. Should Ar vary, then new 7; values may be
required according to (51).

From (51), the mass lumping factor varies by

B/(m*—8) < mp(Ar) < oo (53)

Equation (51) can be derived by a similar argument applied
to other normalized boundary value problems. Inclusion
of a time variable (linear polynomial variation) boundary
condition adds additional terms to the numerator and
denominator of (51), but adds little to change 7 for small
Ar values, Ahthough (51) is a function of the model time-
step size, a mass lumped model using the n;(Af) function
would be constant with respect to n; unless the timestep
size is chapged during the problem simulation.

Comparison of the proposed 7;(Af) mass lumped model
to other values of mass lumping (e.g. Galerkin, subdomain
integration, finite difference) models in the sclution of
classical boundary value linear diffusion problems will
not be presented due to the unavoidable biased selection
procedure. That is, it is perhaps more meaningful to express
the success of a numerical method in terms of a probability

(52)
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as determined from numerous simulations, rather than
demonstrating the success of the method for a single
problem.

A general overview of using the 7;(Af) model can be
summarized based on the comparison of over 300 computer
simulations of several one-dimensional linear diffusion
problems using various timestep and element size combina-
tions, as well as different types of boundary conditions,??
In diffusion problems where the state variable varies rapidly
or where a sharp profile exists, a standard lumped mass
finite difference analog produces the best results. For
slower variations in the state variable and for smoother
profiles, the proposed 1;(A¢) mode] generally gave the best
results, For the fast nodal variation problems, the basic
assumptions in deriving the 7;(Af) model fail in that the
exact solution includes several eigenfunctions beyond the
principal eigenfunction used in the n;(Ar) model. For the
slower nodal variation problems, the Fourier series of eigen-
functions essentially reduces to the principal eigenfunction
which is modeled by the assumed boundary value problem
in each control volume.

Figure 5 shows a plot of the experimentally determined
probability of the 7;(Ar) model producing the minimum
integrated relative error in the solution of several linear
diffusion problems. The accuracy of the n;(Af) model
was found to decrease as the nommalized time-step
increases; this observation may be explained by the in-
accurate boundary conditions assumed for each control
volume problem. It should be noted that although the
ny(Af) model was not consistently the best model, in the
problems examined where n;(Af) was not the optimum
mass lumping factor the resulting model error was generally
less than from either the Galerkin finite element or the
integrated finite difference models.

The consequences of the above results is that use of the
proposed 1;{A¢) factor should result in a linear diffusion
mass matrix lumped finite element model which has a
significantly higher occurrence of being the best numerical
model. This is important due to the uncertainty of accuracy
in any numerical model in the approximation of a PDE
where the exact solution is unknown, Once a computer
code is prepared based on the NDI variable lumped mass
matrix system, it is relatively easy to simuiate the particu-

RELATIVE ERROR

n, L&t MODEL
APPROACHES A
FINITE DIFFERENCE
MODEL,

il af) MODEL

M

PROBABILITY OF n,
PRODUCING MINIMU

) 1 —h 1 1
0 02 04 08 o8 A0 2

NORMALIZEDR TIMESTEP, At

Figure 5. Estimated probability of the wn;(At) model
producing minimum integrated relative error for linear
diffusion problems {sample of 300 computer simulations)

lar PDE by each of the more popular domain methods and
also by the n;(Af) approach. Such a comparison should aid
the analyst in determining a more appropriate discretiza-
tion of the domain or an adjustment of the timestep in
order to reduce the discrepancy between the various mass
lumped models and ultimately increase the level of con-
fidence in the final approximation results.

CONCLUSIONS

The major conclusions from this reasearch are the following:

(1) A unifying numerical model can be developed for
many finite element configurations including the one-
dimensional, triangle, and tetrahedron finite elements.
The unifying model is based on the straight forward nodal
domain integration method. The resulting model is found
to have the capability of representing the Galerkin finite
element, subdomain integration, and integrated finite
difference methods by the specification of a single mass
matrix lumping factor, 7.

(2) The global matrix system composed of the sum of ail
NDI elements accommodated Dirichlet, Neumann and
mixed boundary conditions.

(3) An infinity of possible domain numerical methods
are possible. Two methods of developing various mass
lumping models are based on the well known relative error
and inner-product norms as applied to polynomial trial
functions. These models can all be represented by the NDI
model for specific values of 1.

(4) A computer code based on the Galerkin finite
element method can easily be modified to allow a variable
mass Jumped matrix system and, consequently, represent
an integrated finite difference, subdomain integration, and
an infinity of other domain methods.

(5) An improved mass lumping factor exists which
apparently minimizes approximation error more often than
any other domain method. The probability of the proposed
optimum mass lumping system being the best numerical
method is approximately 85% for small normalized time-
step sizes. The improved method is developed based on a
linear trial function model and a Crank-Nicolson time
advancement approximation. Extension to higher order
polynomial trial functions and other time advancement
approximations should follow similarly. Although only the
one-dimensional problem is considered extension of the
approach to muitidimensional problems is straightforward.
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APPENDIX A: STABILITY AND CONVERGENCE
CONSIDERATIONS

Definition: The governing partial differential equation is
defined by the description variable @ as

b=—-——; xEN (Al

where & =10 is the problem being studied, and initial and
boundary conditions are assumed specified according to
(46} and (47).

Definition: The {8, P(n)} matrices are defined as follows:

T
Pmﬁzoﬁ 1)[71? ﬂ (A3)

Definition: The matrix system operation A(n, ¢) is defined
by

i+i__ gf i+l i
WU Dy

Aln, ¢)=P(n) Y

where ¢* are vectors of nodal values at time k. A(n, ¢)
describes a Galerkin, subdomain and finite difference
approximation for n=(2, 3, ) respectively, for the
approximation of & in {2

86 Advances in Water Resources, 1983, Volume 6, June

Theorem: If A(2) and A(s) are convergent algorithms to
&, then A(n) is convergent to & for = 2.

Proof: From the definition of P(n)

3 -2
Pmy={-— |} P+ |——| P(e= AS
m=()ror () @
Ox
P =a,P(2)+ a,P(); a,t+a,=1 {A6)
Therefore
A(n) =a, A(2) + 2, A(=) (A7)
and
lim A(np)=a, lim A(2)+a, lim A(x) (A8)
Ax-—>0 Ax—>0 Ax—0
At A0 At—=0

where A(2) and A(e) are Galerkin and finite difference
approximations. Thus

lm A()=a;®+ 2,0 =@ (A9)
Ax—0
At

Theorem: Consider the approximation A(n)= 0 where 7
is constant in £. Then A(n) is stable.

Proof: Rewrite A(n) =0 as

Al
(alP(_2) + 2, P(ee) + 3 s) ¢!

At )
= (e,P@) + s - S) ¢ (a10)

or in global matrix notation
Gt =H¢ (A1)

For I° constant in £, a,P(2) determines a tridiagonal
matrix

21
1
alle l
a, P(2)= P 0 1 4 1 (A1)
i 4 1
0 1 2
and
1 -1 n
Af a1 2l
7355 0 -1 2 -1 (A13)
—1 2 —1
-1 14
Likewise,
1 0 N
2 0
o
ang(m)—2 O 0 2 © (A14)
0 2 0
o 1.
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At
l‘or’y='(l'é3'2"
o, @ 1) ) il
3 2 2 6 2
G=
R T I
6 2 6 2
and .
(&&1) (47)
3 2 2 6 2
H=la, ~ a Y (Al6)
—4 = 2o 4 a,— — 4}
(6 2) (3611 as—v) (6 2)

For the specified boundary conditions of @: #(x=0,
L; t>0)=0, the (G, H) matrix system becomes a regular
tridiagonal matrix system. To show stability, the largest
cigenvalue of

G'H (A17)
must be less than 1.
For the G matrix,
o @y vy
=@ ay+ay+y)+2 —6—5)003 (A18)

where N+ 1 nodal points are designated between x =0
and x = L. Then

X ! 2(5"'1 )2( Sn Al9
=] — —_ sin ——
G 377 2(N—1)) (A1)
For the H matrix
. -
hH:§al+a2"'r+(—£+7) COS(N_J (A20)
or
=12 o) o ()
=] —{— sin® { —~—-
H 3 7)( 2(;\@1))
Thus
1— 2(as/3+7) sin? (e
rog o [ DHOBED @

1+ 2@g3+7) sin? (@)

(A22)
where a= (S7}{2(N—1). From the above

Megglis<1forallyifa,=0
Theorum: A(n) is stable for any distribution of 2 1 in £,

FProof: This proof willi be developed for a nodal point
(subdomain)} approximation of ®. For any row p of A(n),
the following linear equation is determined for solution of
nodal value @,

At + At
P+ = s) 0t = (b= 8} 97| (423
2 2 p
where p designates nodal values contributing to row p of
Afn}. For row p

i
P(n)¢= —

e +2ngpt dpa]  (A24
2(ﬂ+ 1) [¢p~1 n¢p ¢p ]J ( )

and

1
S¢E;[—¢p—l+2¢p+4¢p+1] (A25)

Thus, the above gives

!

2T e vt s ]

At
_5_5‘2 [-—- ¢p-—-1,q+1 + prp!q-#l '_¢p+1,q+1]

1
=;('?;T)[¢p—l,q+2”p,q+%+l,q]
At .
e [~ @p—1,4 28p,4 = Pp+1,q] (A26)

Let u=(n+ 1) At/1* and define an error at node p and time
¢ by a Fourier distribution term

£, g =ea (A27)
Substituting £, ; into the above gives
[eiﬁ(p—l)hsq+1 +2n glfpheq 1 4 eiﬁ(P+1)th+1]
+u [_eiﬁ(p——l)hzq+1 42 eiﬁph5q+lteiﬁ(p+1)hzq+l}
= [P —1)REq oy gifPRET 4 e+ hgaty)
+ [eiﬁ(pvl)hgq_ 2 oifPhia 4 eiﬁ(pﬂ)hgq]
Dividing through by e#P7£ gives
gle™ P +2n + e8] — pg [o P — 2 + o7
= 7+ 2+ o] 4 pleH—2 + )
But cos Bh = (e — ¢~ )2 thus
£[2 cos Bh+ 2n]—pE[2 cos fir—~ 21 ={2 cos gh+ 27]
+ uf2 cos gh--2]
{A30)
giving
(cos fph+m) —p{l — cos fh)
:(cos Bh -+ m) + u(l + cos )
Stability requires (£] <X 1 where in the above,

(A31)

_(q+1)ar
”z__lz_"_
and §81is a value of
§,% —. Na=L
Y B

Thus,
7 _ 2
. {cosfh+n)—2u s‘m2 (Bh}2) (A32)
(cos B + ) + 2 sin” (Bh/2)

The condition |£] < 1 requires

., bR ., B
(cos Bh+n)—2u sin By Ié (cos Bh+n)+ 2u sin 7|

(A33)

But for cos fh+n=0, n is greater or equal to one which
causes the NDI algorithm to be stable.
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