Numerical Heat Transfer, vol. 7, pp. 235-240, 1984

TECHNICAL NOTE

LINKING THE COMPLEX VARIABLE
BOUNDARY-ELEMENT METHOD TO THE
ANALYTIC FUNCTION METHOD

Theodore V. Hromadka 1l
U.S. Geological Survey, Laguna Niguel, California

The complex varigble boundary-element method (CVBEM} is expanded into a
finite series of analytic functions. For the special case of linear polynomial besis
functions assumed on each boundary element, the CVBEM and the analytic function
method {AFM) results in a similar numerical modeling approximation.

INTRODUCTION

Several advances in the use of boundary integral equation methods to solve
boundary-value problems such as the Laplace equation Dirichlet and Neumann problems
have been reported. The major thrust in this modeling technique has been in real variable
methods based on Green’s theorems (e.g., [1]).

By using complex variable analytic function theory, however, exact solutions of
the boundary-value problem are achieved interior to the approximate boundary [2]. Use
of analytic function theory including potential function analysis for the study of two-
dimensional steady-state heat transfer problems is well advanced [3}. The analytic
function method (AFM) [2] is an approach to developing an analytic function approxi-
mation of the true solution to the boundary-value problem. The complex variable
boundary-element method (CVBEM) [4] develops another analytic function approxima-
tion by using a Cauchy integral to develop a boundary integral equation,

In this paper, the CVBEM will be shown to expand into a series of products of
complex polynomial and logarithmic functions. The order of these complex polynomials
will be shown to equal the order of the specified polynomial basis functions. The logarith-
mic functions will be shown to be centered about each nodal point specified on the
problem boundary, Finally, the CVBEM will be shown to reduce to the AFM for the
special case of linear basis functions assumed between boundary nodal peints, This
final result provides a direct and valuable link between the two numerical modeling
approaches.

Because this note provides an analogy between the CVBEM and the AFM, the
theoretical foundations developed for the AFM (such as applications for inhomo-
geneous and anisotropic materials) can be immediately applied to the more recently
developed CVBEM. In addition, the capability of the CVBEM to utilize higher order
trial functions can now be incorporated into the AFM by using the derived linking
formulas. Consequently, computer programs based on either method can be modified
to represent either modeling approach and to incorporate the benefits of both numerical
methods.
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NOMENCLATURE
((z)  global trial function z; nodal coordinate
N}(‘ (s} basis function @  nodal value
g local coordinate w(z)  analytic solution
z complex coordinate &(z)  approximate function

MATHEMATICAL DEVELOPMENT

Let €1 be a simply connected domain with boundary I', where I" is a simple closed
contour. Discretize I' by m nodal points into m boundary elements such that a node is
placed at every angle point on ['. Each boundary element is defined by

Iy ={z:z=1z(s) where z(s)=2z; + (z;,, —z;)s O<s5<1l} j¥m (1)
with the qualification that

[ ={z:z2=2(s) where z(s)=12z,, + (2, ~2,)s O<s=1}

Then M= u T (2)

In the following, the qualification for element m [such as in the definition of Eq. (1)]
will be omitted whenever it is understood. In addition, when understood, the limits of
summation will not be stated, so that
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Let each I'; be discretized by (k -+ 1) evenly spaced nodes (k> 1) such that I; is sub-

divided into & equilength segments, Then T is said to be a (k + 1)-node element. Each
I'; has an associated nodal coordinate system such that z;; =z; and z; p 4y =Zj4y =

Zi+1,1-
On each I';, define a local coordinate system by
G8) =20 T @ e — 28 =2; 0z — ;)8 OS5 )
Whﬂre dé’] = (z]‘,k.f.l _ngl) ds.
On each (k + 1)-node element [, a set of order k¥ polynomial basis functions ate
defined by

NF()=aj 0+ a5, 8+ +aj, .8 )

wherei=1,2,...,(k+1)and 0 s < 1, and where

v (z;,n*zf,l)F; 1 n=i ©
PNz 850/ f 0 n#i
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The basis functions are further defined to have the property that for { €1’

§—2z;4
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NE; _) = (7)
Zikv1  Zjn 0 (ET;
Let wi(z) be analyticon Q UT,
At each nodal point on T, define a specified nodal value by

Wy, = oAz, ) (8)

Using Eqgs. (7) and (8), an order & global trial function is defined by

k+1
1k g
G(r)~26 o1 =Y ) G o ©)
FA I

j i=1

From Eq. (9), the global trial function is continuous on I". An H,, approximation func-
tion &y (z) is defined by the Cauchy integral

N G () d
wk(z)=$]r% €Q  z@r (10)

Because the derivative of &,(z) exists for all z € Q, &k (z) is analytic in §2 and exactly
solves the Laplace equation in £2.
The CVBEM continues from Eq. (10) by expanding

k k
[G(f)df z/ (r)d; o

But from Eq. (4)

K+l
2 @y, (NFAS) | @y —2)) ds

¢kae 1 L&
/P' {—z -/ [z; + (zje1 —z5)s] —2 12)

] §=0

Rearranging Eq. (12),

k+1
L Z Gf'i}\f}f,v(s) ds
Gr*@) dt =1
Tt—s s — (13)
r; o !

I

where v; = (z — 27)/(2;+, — 2;) is independent of the integration variable s.
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Consider a quadratic set of basis functions, The integral of Eq. (13) is determined
by noting from Eq. (5)

' P
w; N ds)ds wy {a,50 ;18 a; ;25 )ds
5= A s

4]

- 44,2 —~ 'Yj—_l
=W;,i( 12 +a; +aj,i,27j) *w;,iNf:‘(’)'j)ln( - ) (14)

where fo,i(T;) is the entire complex polynomia! function determined by directly substi-
tuting 7, into the variable s ovaj,-"f,-(s), and

=1 z— 2z
In (ﬁw)ﬂn (#L‘) (15)
Y 272y

From Eq. (14), the first set of resulting terms is an order 1 complex polynomial
and the corresponding total integral of Eq. (13) will result in

Z (-*3] ¥ ), I(S) ds k+1 -
L ——— — =R} (z)+ z o7, lNF ) In (Eﬁ) (16)

Z’Zj
0

where Rl-‘ (z) is an order 1 complex polynomial formed by the sum

K
Rl . o — 01,12 +
i (2)= Wi\ 75 T +a;, 27 amn

The results of Eg. (16) can be directly extended to an order & approximation function by

S (91 S g Ak (Z“Zfﬂ
[r,-'—;——z“—"f ("'”,-Z, il in _??’) (49

where R¥~'(z) is an order (k — 1) complex polynomial.
Thus, the CVBEM results in an order k approximator &, (z) which is defined by

N 1 E+1
““(ZFEE}Z Rk Yz) + 2 w; i N; ,('y])ln( Z;+.1) (19}

z
i=1 !

The objective is to expand Eg. {19) into a series of logarithmic functions. It is
noted that the logarithmic contributions are of the form In(z —z),/=1,2,..., m,
which involve only the endpoints of the boundary elements. In addition, each term
In (z —z;) is associated with the two elements sharing z;; namely, I;_y and T';. Re-
arranging Eq. (19),
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K+l
Oylz) = S Z Rf~'(@z)+ Z & i NE(y In(z —24,)
i i=1}
%
- Z & N In (2 —2)) (20)

i=1

Combining terms according to In (z — z;) gives

K+l
Wil ()= E Rf~') | + 2 Inz—z) z @1, NF ) A1) — @7 (NFAY))
f f i=1

7
k+1
+ | 2mi z G, i & ) (21)
i=1

In Eq. (21), the first terrn is the summation of order (k¥ — 1) complex polynomials asso-
ciated with the integration of Eq. (18). The second term is the logarithmic expansion
associated with Oy (z). The third term accounts for the multiple-valued nature of the
function In (z — ), where { €I" and the branch cut is assumed to originate from point
z € and go through point z; €T. Noting that the third term is an order & entire com-
plex polynomial function, Eq. (21) can be rewritten as

o) =R*¥@) + ?:H Z In(z —z;) Z T (22)
fi i

where TH = &y 1N iy 1) — &y, :NF (), and R¥(z) follows from Eq. (21).

By the definition of the polynomial basis functions in Eq. (7), (z —z;) is a factor
of each IV,!‘_ 1,#(¥j—1} except for i = (k + 1). Likewise, (z — z;) is a factor of eachf\fj’f,-('yj)
except for i = 1. For these two exceptions, (z —2;) is a factor of [N, o (vj_y)—
]V,.-’fl('yf)] . Thus, (z —z;) is a factor of each complex polynomial T}'}. Therefore, the final
expansion form of &, (z) is given by

x(z)=R¥(z) + Z PF 1 aMz — 2z \n(z — z)) (23

j
where the 2ni term is combined into the general form of the order X complex polynomial

R*(z).
From Egs. (22) and (23),

Pty = (24)
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Two important characteristics of Eq. (23) that are utilized by the CVBEM are:

1. If wxz) is an order k {or less) polynomial, then necessarily
E Gj,fﬁfff(’?’j) = wlz)
i

and from the definition of 7§,

ET;;::(J
i

Therefore, oy (z) = w(z) implies R* (z) = w(z).
2. The limiting value for node z,, € I" exists from

lim Oe@)=RMe) + ) PF T Eaen -z inGa -z)  (25)
Z""Zn ]
j;'én
This limiting value is used by the CVBEM to generate the necessary boundary
integral equations for each nodal value [4].

The finite series of Eq. (25) can be used directly to model boundary-value problems
of the Laplace equation by solving for the several complex polynomial coefficients given
specified nodal point values at z; €', The CVBEM of Eq. (10), however, models the
boundary-value problem by solving direcily for the potential or stream function nodal
values. In Eq. (25), for the case k = 1, a form of the AFM [2] results.

CONCLUSION

The CVBEM results in a finite series of products of logarithmic functions and com-
plex polynomials. The order of these polynomials equals the order of the assumed poly-
nomial hasis functions defined on each boundary element. For the special case of linear
polynomial basis functions assumed on each boundary element, the CVBEM reduces to a
form of the AFM.
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