Determining relative error bounds for the CVBEM
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The Complex Variable Boundary Element Method provides a measure of relative error which can be
utilized to subsequently reduce the error or provide information for further modeling analysis. By
maxtmizing the relative error norm on each boundary element, a bound on the total relative error for
each boundary element can be evaluated. This bound can be utilized to test CVBEM convergence, to
analyze the effects of additional boundary nodal points in reducing the modeling error, and to
evaluate the sensitivity of resulting modeling error within a boundary element from the error
produced in another boundary element as a function of geometric distance.

INTRODUCTION

The Complex Variable Boundary Element Method utilizes
analytic function theory to generate boundary integral
gquations as linear combinations of real coefficients multi-
plied by the boundary value problem’s known and un-
known nodal point boundary condition values. A definite
advantage of the CVBEM to real variable based boundary
element methods (BEM) or boundary integral equation
methods (BIEM) is that the CVBEM resulis in linear equa-
tions which are exactly integrable, and a measure of relative
etror is generated by the CVBEM model. This relative error
generation can then be utilized for modeling error analysis
and model correction.
The main objectives of this paper are threefold:

(1} To develop beunds on the relative error norm which
include the relative error contributions from the un-
known boundary condition values.

(2} To develop a simplified relative error bound rela-
tionship which can subsequently be used to deter-
mine the impacts of error produced between boun-
dary elements {as a function of relative distance
between the elements), and

(3) To evaluate convergence of the CVBEM and the
response of the method to addition of nodal points
on the problem boundary.

CVBEM DEVELOPMENT

Consider a simply connected domain £ with simple closed
contour boundary I'. A boundary element discretization is
generated by approximating T with m straight line seg-
ments (or boundary elements) T; such that:

I3 )
=1

where in {1} T is not necessarily equal to the union, and

I‘,~,Iﬂl",-=zi=x,-+zyi (Fig. 1). Bach element can be
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Figure 1.

specified to have two (or more) nodal points such that a
linear trial function {or higher order polynomial) will
result in continuity of the state variable along T'.

In this paper only the Laplace equation is studied
with boundary conditions which are continuous along I’
such that there are no singularities on 2 U I' and the solu.
tion to the boundary value problem, w(z), is analytic on
Qur,

An analytic function «(z) defined on QUT is com-
posed of two harmonic real variable functions ¢(x, ») and
¥{x, ¥) such that:

w(z) = ¥x, ¥} + i{x, ) (2)
where ¢{x,v) and y(x,v) satisfy the Cauchy-Riemann
relations and :

Vie(x, ) = Viylx, ) =0 (3)

If w(z) satisfies the problem boundary conditions on I,
then @{x,») and ¥(x, ) are the corresponding state and
streamn functions associated to the unique problem solution.
For discussion purposes, the boundary value problem is

CVBEM boundary discretization
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assumed to have ¢{x, y) specified continuously along I and
a single point value of Y{x, ¥) is assumed specified.

Using the UT; approximation of [, nodal points can be
specified at the ends of each element ¥} such that:

Ti={zz=z(1-5) +5z,;0<s <1} (4}

where (z;, z;4) are the nodal point endpoint co-ordinates
of T;. At each nodal peint /, a complex nodal value &y can
be specified by:

w] = ‘5} + ilﬂj (5)
where (@, ¥;) are specified real numbers to be eventually

associated to the real numbers (¢y, y;) where the following
notation is used:

w(zp) = ¢lx;, ¥;) + (x5 ;) = Az)) + W(z;) = ¢ + 1Y (6)
In (5) it should be noted that in our study case the ¢ values
are known for each node j, but the  values are unknown

and need to be determined.
On each element I, define a trial function &, + oy,

such that:

Qg = 0L¢(¢ z) }

oy = aw(t,(/ z)
In (7), o (and o) are assumed to be continuous functions
on I} such that the function values between neighboring
elements agree at the nodal points. In this construction, the
trial functions for the unknown ¥ functions are assumed to
be simple linear polynomials:

aw.—%(aﬂ )+‘Lf+l(

1T

ZET (7

zZ— Z‘.:
P~ (8)
Zis17
where in (8} a, is used to approximate (z) in element J
withz €17},

An approximation function ¢xz) is developed by the
integral function:

ImiKz) = jM 2 &T (©)

UTI

In {9) the integrand term [oy, + i, J represents the various
trial functions on each I as { is circuited along UT}. For
discussion purposes, let:

where [ is geometrically simple encugh to be split into m
straight line segments (or elements). Then:

e + fey [ m + foy ]t
R i [ ol 2K
r 'y

where on each I}, {ay + ’%] = [y, )+ oy (¥, 2)).
Hromadka and Guymon? show that the principal value
of (10) exists for z €T and

(10)

2miw(z)= lim -M= j=1,2,....,m (11

- 4ad I §'—-z
j'F

where it is assumed m nodal points are specified on I Con-
sequently from (11), a linear equation is determined for
each nodal point which relates the approximation function
to a sum of specified nodal peint values & multiplied by

76 Engineering Analysis, 1983, Vol. 2, No. 2

complex variable coefficients. This system of equations can
be written in matrix notation as:

W= Cy(@, ¥) +iCi{, ¥) (12)

where & is a vector of approximation function nodal
values w(zj) = @y = ¢J + 1. Cgr and C; are 1 x 2/ matrices
of real numbers representing the real andimaginary portions
of the boundary integral equations, respectively,

{n our problem, ¢ is assumed known and \ values are un-
known (except for a single value to determine the constant
of integration). Consequently, another rule or assumption is
needed to determine the 2m unknown values of @ given
only # known values of & = ¢ + .

The rule used by Hunt and Isaacs® and Hromadka and
Guymon® is to use only one of the matrix systems and
force (in our case) Y = ¥ by implicitly solving:

=9 =C% V) (13)
The result of this modeling approach is that:
@=¢+if=9+if (14)

where in {14) the nodal point approximation values of the
stream function ‘if, equal the now assumed nodal point
boundary condition value, \IJ, However, generally & #Qﬁi
Thus, a relative error e(z) is determined on I {where
I'" is arbitrarily close but interior of I') by

A =w@)—w(Ez) , z€ I"}
=(@—®+iy—J)

Hromadka and Guymon?® present methods of working with

this relative error in order to provide an overall reduction in

modeling integrated error. In this paper, the main objectives

are to develop estimated relative error bounds from this

error function, and to develop simple ancillary integral

equations which can be used to examine the error develop-
ment in problem applications.

(13)

RELATIVE ERROR BOUND ESTIMATION

The relative error function (z) can be evaluated for some
point z3 €T by:

(16)

2mie{z1) = lim f[w(f) "l iy )18

277 §—z
r

For «w({) = ¢+ 1y and by assumption ¢ = ag($, §) for {ET,
(16) obviously simplifies to:

ey d
Ine(z]) = lim ; ¢
=z -
r

ey =W ay)  (17)

Because ¢ is known continuously on I, trial funciicns can
be selected to provide within arbitrary accuracy t,=¢ on
each Ty Consequently, the total relative error e(z) can be
assumed generated entirely from the e, function. If the
problem domain is iinearly translated such that z7 coincides
with the origin, then (17) simplifies to:

"e,, d

- (8)

Imie(z7) = lim _ J
Z-+rQ
r
The magnitude of nodal value e; = e(2}) is given by:
ey dt
27le)) = hm ’ v
{—z!

Ul

z-»O'

T
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Zm

Tm

P . Aﬁ;

& Z

Figure 2. Transiation of 1 to coincide point 27 o origin
of axis

(19)

where I'y and T, share nodal co-ordinate z; and, therefore,
are involved in the Cauchy principal value evaluation.

The }e{z)"] function can be evaluated at a point 2z
interior of an element [y similar to {19} where the boundary
is assumed translated so that z{ ¢oincides with the origin
{Fig. 23, by:

I oprey, di i ey d
rlet| = lim | f Y 1< lim | [ v &
z-*D‘[, ¢ Y

T | |
+3 e (20)
f:jj )
Iy
The problem of (20) will be studied in the following (with
(19) being analogous in development). Consider the

integral on element Ug, K # 1 by:

er P LI L
el D

where
My = maxiey(z)l . z€T%
g = min(zt, z €y

On arbitrary element [y, select the study point z§ such that
le(z¥) is a maximum with |e(z7)| = M,. Then:

arp m

. g

M, < ) M 22)
! :ﬂma“ Ji‘ Z (22

r,

Equation (22) applies to each boundary element for the
case of M, occurring interior of each T'y.

From Fig. 3, point z§ (origin) is interior of T, of length
iTi=L =L+ 26+ L Thus:

€ €
* ey d d e, d
limJ”{'{: J.fi—erhmf‘”g
z—0" J vt~z ¢ z— 0" ¢~z

T, ~Ly-e —-€

Lb+e

g
+ f 7 & (23)

¢
€
The integrand term d{/¢ is monotonic on the closed
intervals [—L,—~¢€,—¢] and (e, L,+¢€] and can be
evaluated in magnitude by:
—€

e

¢ v
~Lg-e
L+ L+
éMl(}n L. e) (24)
€ €

where it is assumed that £,4, > Q. In (24}, the maximura
value of the logarithm sum is when L, =L, =(T|[/2 — e
The remaining mtegral term of (23) is analyzed by lettmg

ez} = ¢, + f(z) in the closed interval [—¢, €] where e is
an assumed mean value of ey, (z) in [—e, ]. Then:

i d €. d €
1im_J b [im_e:pf {4 lim ffmdr (25)
z—+0 {—z =20 ¢~z z-0 {—z

From (24) and (25) and setting L, = L, =1\ 1/2 — ¢

) firn J’e“" a
=0 ) {—z

Lotey
< 2M, m( )1- Ey (26)
€

where

£y = lim
Find U
~€

e[f(f) &

- |

Substituting (26] into (22) gives a generalized relative error
bound for each boundary element I';:

[Ty m I
WM, < zM,m( ’) ZMI"+E, (27}
2¢ ) = Ty

Equation {27) can be studied for the simplifying assump-
tion of £ being assumed zero for each Ty

It is convenent to assume that the £, tetm i3 negligible
fer the special case of:

e=HTlexp(3— 1)~ 0.0356|T) (28)
Then {27} simplifies to:
w r
< S L (29)
=2 &

Figure 3. Principal value integral evaluation geometry
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The results of (29) can be easily used in the CVBEM
modeling approach to analyze the sensitivity of relative
error reduction with respect to error contributions from
various locations zlong the problem boundary.

CONVERGENCE OF THE CVBEM
Convergence of the CVBEM approximation function (z)
to the analytic boundary value problem solution w(z) (if
w(z) exists) is tested by verifying:
‘S}in}) zy=wlz), z&T'UQ (30)
where § = [T5(; that is, [" is now subdivided inte equilength
elements. A straightforward approach to this prablem is to
show that:
lim & = ¢
50
(where in our study case ¢ is the known boundary condi-
tions on I') and then conclude that by the Cauchy-Riemann
equations, ¢(2) = Xz) in the limit.
From (12), a method to determine the unknown nodal
values of J on " js to set:

¥ =Ci(e ¥)
which results in an approximation function < such thay at
nodal point j (z; € '):

Gy =+ iy = g+ i
Thus for m nodal points on I™:
Wy =Pz) . §=1,2,3,....m

The true solution of the boundary value problem, w(z),
is analytic on 2 U T and is therefore uniformly continuous
on the closed set £2UT. The approximator ¢z} is also
analytic on 2 for all z &1I" and is therefore continuous in
that region. On the boundary I, however, dz) is not
analytic but the Cauchy principal value of the limit exists
as &x(zq) is evaluated for z, €17 by:

" [th)'f‘ f&w]dg )

; €T (3])
— Z

2miixAzo) = im

2Ty

T

where ¢xXzy) is defined to be the above limiting value (as z
approaches z; €T from the interior of Q).

The approximation integral function of (31} would
equal the true solution iz} if the trial functions for the
unknown i variable were the solution to the boundary
value problem. That is, the finear trial function a,p(zﬁ $)

can be corrected by a continuous function a"‘(§') such that
(Fig. 4):

Y = o (L, O + a*(0)

where the true nodal values z,D),- are now used in the approxi-
mation, Thus for ay(dy, H=dDon T

" Log(dy, §) + foy (9, §) + io™(0)] df
J {—z

r
In (33), o*({) identically zero on I' implies (2) = w(z).
Because ({7} is uniformly continuous on the simple closed
contour [, then for every ¢ > O there exists a & > 0 such
that 1Tyl <5 guarantees that [a*($)] < e&'. Rewriting (33)

a5, _
2 icolz) = jl%(% §) + doy (4, )] df " J'a*(t)df
{-:z {—2z

r

a*(z;) =0 (32)

2ria(z) = (33)

(34)
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a'((hw(()-aw(w].()

Ya (L) .
- MAX la (U1 ON 1

(Z;) (Z54)

DISTANCE ALONG BOUNDARY ELEMENT, l']

Figure 4. Relationship of correction function a™(§) to the
Junction $()

the correction function integral can be evaluated as:

[wmaﬁm () dg
f'*z i=1 f"‘Z

r l",'
For z, €T, let R =minlz—z;|, z€. Then choose a §
such that € = eR/iT] where ¢ > 0 is the desired tolerance.
Then:

(35)

P ra*(0)dyl morlat d eR&
J () df < Jlﬂt (Ol §‘I<m —e (36)
{—z, l = (IR
r ]."','
where m = | I'|/8.
Thus as 6 = {Ij{ approaches O in the limit the contribu-

tion from the correction trial function becomes arbitrarily
small and, therefore, &(z) approaches w(z) point wise. For
z, €T, a similar argument to (36) is made except (drop-
ping limit notation):

*mﬂ; wm@;
|f

{—z

g i= 2[}
I.x:tting R= minlz-—zsl, zE€T and z &1, (and assuming
z; is the mldpomt of "1}, then choose a 5=|T}l, j#1,
such that € = €,R/[|. Then analogous to the development
of {22) and (36):

» i

a*({)df <
§—zy

r

Ja* (g
||§-_‘Z1'

(37

-Zl

s aX(§yde ~11eyRE
J * (g-) § +(m )61 <€1+Ez<f

i’—“zll [TIR

L

where R = |I'1]/2 is chosen such that the Cauchy principal

value:

R * d i
U () U <e
{—zy

L

APPLICATIONS

The relative error bound relationship of (29) (or more
precisely from (27)) can be used to evaluate the response of
the CVBEM model by adding an additional nodal point
to .

I. Suppose an additional nodal point z, is added to the
midpoint of boundary element [',,,. From (29):
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ll" iT
M, < ): l+M —-"iwl (39)
=2 :% D
But for z, being a new midpoint node on T, implies:
r 1) Iy
M, hm’>Ma LM, ~2 (40)
Zm a b

where [, UT, =T, and the other terms follow similarly.
Since @ ,, = min(%,, @) and M, = max(M,, M,), it can
be concluded from geometric reasoning alone that adding
another nodal point will reduce the relative errot bound (or
result in no change).

II. Another method 1o analyzing bounds on the refative
error norm is to assume a trial function distribution of the
ey (z) error function on arbitrary element I'y. Gne approach
is to tet ey (2} € {Pfz), z ETs} where P2} is an nth order
polynomial of (n + 1) nodal values {(equally spaced) on I';:

n
Pzy=3 Ndz}ex (41)
k=0
where N(2) is the usual nth order polynomial shape func-
tion and e is a nodal pomt value of ey, for z, €1y,
Forn=0and ey =ey (aconstanton I'; }:

sey d.g'“~
im =
z—+( -z
rl
For ==
Zie 2 z—z;
ewze,( ! )+ez(———k—~—)
1T g ZpeiT
and
|
a e g—
lim | =¥ l: (e, — €1} |< 2M,
=07 ) §—
r,
ﬁiiy
o r SEEPAGE FACE, I,
4“’\
3m
(x=0,y 0} o 526 5
Q
< 3
'r:] 2
[
-~
%
-4
(=]
g -
W
Y -2
g
a4 3
wd
x

Figure 5. CVBEM nodal placement for seepage problem
and modeling relative error

Slrmiarly for =3, the cubic variation of ¢y on T, results
ina maximum relanve error norm of:

ilmfe d§=

z2—0" g’ z

9
ey 9e; ) 24 '<5M1

4 4

where {81,62,33, €4} are evenly spaced nodal values of
ey{z) for €Ty, Tt can be noted that the bound on the
relative error norm becomes arbitrarily large as the trial
function polynomial order becomes atbitrarily large.

N1, Should a conformal mapping transformation be found
which maps U T into the unit circle C and its interior,
and the solution to the boundary value problem is analytic
on C and its simply connected interior, then the analysis
of relative error determination is simplified. Letting C be
defined by {z:]z] = 1}, then z can be described by z =
Ref, where R <1 and 0 <8 < 2r. In this application, C is
assumed discretized into 2(n+ 1) equilength boundary
elements of length (F ( =n. If the trial function is assumed
to be a polynomial as a funiction of all nodal values &y, then
the integral approximation function reduces to an n-order
complex polynomial centered at the origin of the unit
circle:

1 +iagldt =n
o= J [—Oi‘g—g—:i-’]—H:ggaoz" (42)

C

where a, = (e +if;); {oy. B} ER .
Again assuming ¢(R =1, ) is known on C, then P,{z)
can be constructed by setting:

S (o + i) explid) B = aff) (a3)
j=Q

which reduces to the real and imaginary formulas of:
g+ R{occosf— B sinf)y+ ..
+ R™(w, cosntl — 8, 5in 26} = @(R, 8}
Bo+ R(oysin@ + Bycos ) + ...
+ R"(a, sinnf + f, cos nd} = J(R,0)

The (o, ) are determined for Pz} by solving (44} for
the 2(n -+ 1} known values of ¢ (and at least one value of J
is known) on C. Because Pz} is of finite order it is uni-
formly continuous and analytic on C'U £. Relative error is
casily integrable by noting:

e(z) = (R, 0) —~ (R, 8) = (9 ) + i(y — )

and e(z} is analytic inside and on C giving:

(44)

f e(z)dz =0 (45)
[
which implies.
fw-pe (46)
;

iefw'- &&}dz} ~

In this application it is assumed that (R =1, §) is known
on € and, consequently, ¢, = ¢— ¢ is known contmuously
on C. Thus, ¢.={¢—- 05) on C where C {5 subdivided
(initially) by 2(n+1) equidistant nodal points z; where
plz;) = 0.

Of interest is the effect of nodal point density on C.
Again using the relative error norm, the objective is to
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minimize ¢. on each I;. Since each element T} is a straight
line segment between co-ordinates z; and z; + (both on C),
the x-y co-ordinate pairs are related to a first order poly-
nomial parametric function of variable ¢. Thus on:

Me=i{ziz=z2,{1— 1)+ 25016 0L 1)

x =x(t} and y = y(¢). The maximum value of @ (k) on T
is determined by differentiation of ¢, on each I'y {2 maxi-
mum $,(k) must be interior of I'y as ¢, =0 at nodal
points). Given the element locations of ¢fk), two addi-
tional nodal points are added at those locations on € where
two g(k) are maximum {two points are needed due to the
two-part complex coefficient).

Thus, after an additional two nodal points are added to
C, a new discretization (or partition) £* is formed where
the original partition P is a subset of P* From (27},
0(P*) < 8.(P).

CONCLUSIONS

In this paper, convergence of the CYBEM to the true solu-
tion of the boundary value problem is examined. Addi-
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tionally, bounds on the relative error norm are determined
and a straightforward relationship for evaluating the inter-
element dependence on relative error is forwarded. Using
the developed relationships will provide an easy to apply
test for selecting subsequent nodal point densities in order
to reduce the relative error norm on any boundary element.
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