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The time- and position-dependent locations of the 0°C isotherm were calculated
using two modelling strategies: a domain method and a boundary integral

nethod, Simulations were made for the runway embankment at Deadhorse Afrport
near Prudhoe Bay, Alaska. The same thermal properties, initlal conditions, and
boundary conditions were used in both models. Sinusoidal surface temperature
variations, dependent upon surface type and exposure, were used in the simula-
tions rather than measured surface temperatures. The positions of the 0°C
isotherm determined by the boundary integral method near the time of maximum
thaw penetration were essentially the same as those determined by the finite
element method, and results from both models agreed closely, within a few centi-
meters over a total freezing depth of about 2.5 m, with the measured positions.
The largest differences between measured and computed positions occurred early
in the freezing and thawing seasons. The primary advantage of uslng the
boundary integral method for problems specifically of the type considered herein
is that it requires only a few nodal points, so computer simulations can be

completed rapidly on a micro computer., If the two-dimensional thermal regime 1is

necessary, the finite element method is most suitable.

During the 1977 and 1978 thawing seasons, the
runway at Deadhorse Alrport near Prudhoe Bay,
Alaska, was improved and paved with an asphaltic
concrete pavement. With cooperation from the State
of Alaska Department of Transportation and Public
Facilities and the Federal Aviation Administration
(FAA), USACRREL installed temperature Sensors
beneath and adjacent to the runway. Subsurface
temperatures at some locatlions are measured wmanually
in liquid-filled access tubes and others are moni-
tored automatlically by a data collection platform
(Betg aud Barber 1982) that transmits informatioun to
USACRREL via the ERTS satellite system (McKim et
al. 1975), The equipment has been in operation
since August 1978.

Two modelling strategies were used to calculate
seasonal thaw penetration: (a) a finite element
domain method (Guymon and Hromadka 1982) and (b} a
boundary integral equation method (Hromadka and
Guymon 1982). The time-dependent locatiom of the
phase-change isotherm was calculated using both
models., In addition, temperature variations at
gselected positions within the runway embankment were
computed using the finite element methed. Compari-
gon of calculated temperatures and predicted 0°C
isotherm locations with measured data indicate that
both numerical modeling approaches are accurate
tools in predicting soil thermal response in
freezing/thawing envirouments.

DESCRIPTION OF MODELS

The domain method approximates the well known
two-dimensional heat transport equation, which for a
freezing or thawing soil is:
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where x, y = cartesian coordinates

= time

= temperatute

= the thermal conductivity of the
goll-water-ice mixture
volunmetric heat capacity of the
soll-water-ice mixture
the volumetric latent heat of fusion of
bulk water

pq{ = 1ce density

pw = water density

Cy = the volumetric heat capacity of bulk

water

Vi, Vy = velocity flux components

87 = the volumetric ice content of the
soil.
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The density parameters are relatively precise
for modeling purposes. Although the lateant heat
parameter is a function of temperature and salinity
(Anderson et al. 1973}, all of the water is assumed
to freeze at 0°C in these simulations. C, may be
regarded as a well defined constant, but the ap-
propriate thermal conductivity and heat capacity of
the soil-water-ice mixture are not exactly known and
must be estimated. DeVries' (1966} welghting method
for estimating these parameters is often employed;
i.e.
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B= T8, P (2)

where B 1s the required parameter (Kj or Cm),
Pn 1s the volumetric content of a specific con~
stituent, and n indicates the nth constituent. The
velocity flux parameters must be assumed or cal-
culated from a coupled moisture transport model.
Since this paper 1s concerned with heat conduction
only, it will be assumed that moisture flux is
negligible; consequently, the coanvective component
of Equation |1 1s asswaed to be zero.

To solve Equation i, initial and boundary con-
ditions are needed, Initial conditions are of the
form:

T(e=0) = T(x,y)

ai(t=0) = Gi(X.y) (3)

which are usually specified at discrete polnts in
the solution domain., While boundary conditions may
be of any form (e.g. a surface energy balance
simulation), we will use two types:

aT
o 0, t >0 4}
where n Is a uanit normal coordinate to the solutioun
domain boundary, and

T(s) = N Ta(s,t), t>0 (5>

where N is the Corps of Engineers n factor (Berg
1974), s is a tangent coordinate to the solution
domain boundary, and T, is the alr temperature,
which may be a function of time.

Domain Approach

Commonly used domain approaches include the
finite element and finite difference methods.
Hromadka et al, {1981) show that an infinity of mass
lumped domain numerical analogs wmay be incorperated
into a single matrix expression. The finite
element, subdomain, and integrated finite difference
schemes are represented as special cases. Depending
on the subdomain of integration and the density of
the state variable approximation, varicus domain
algorithms may be obtained. These are unified into
a single matrix representation called "nodal domain

integration,” which yields a system matrix similar
to the finite element scheme:

KT+ cm) T=F (6)

where K is a square-banded symmetrical conduction
matrix that is a function of thermal conductivity
and global discretization, €(n) is a square-banded
symmetrical capacitance matrix that is a function of
capacitance parameters and a mass lumping factor
{n), T and T are vectors of unknown temperatures at
discrete points and their temporal derivatives,
respectively, and F is a load vector that is a
function of the boundary temperatures. Hromadka et
al., (1981) give complete details on the derivation
of the matrices in Equation 6. Guymon and Hromadka
{1982) use this technique to develeop a two-dimen—
sional model of coupled heat and moisture transport
in freezing or thawing soils. 1In the analysis pre-
sented here, the n factor was set to a value such
that a standard Galerkin finite element scheme was
used in all domain computations.

Rather than solve Equation 1 in the form showm,
the latent heat term is removed and is approximated
as an isothermal process (Guymon and Hromadka
1982). Latent heat effects are simulated by a
simple control volume approach. A discrete volume
of soil is not allowed to reach subfreezing tempera-
tures until the latent heat of fusion of all water
in the volume is exhausted. Because this approxima-
tion makes it difficult to determine the position of
the freezing or thawing isotherm, a pseudc apparent
heat capacity approach is used by weighting the dia-
gonal terms of the capacitance wmatrix., Only the
heat transport component of the model was used in
the study.

To solve the domain problem, the solution
region is discretized into triangular finite
elements, as shown in Figure 1. Temperatures are
represented by linear shape functions within each
triangular finite element,

Boundary Approach

For problems where phase-change effects
dominate the solution, the temporal term In Equation
1 may be assumed to be negligible. 1If one assumes
an igotropic, homogenecus medium, Equation 1 reduces
to the Laplace equation:

92 =g (7)
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FIGURE 1 Deadhorse runway cross section showing elements and nodes used in the dowmain solution.
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FIGURE 2 Boundaries and modal locations for a
general boundary integral solution.

where again it Is assumed chat moisture Cransport is
negligible. Equation 7 ils assumed to apply in both
the frozen and the unfrozen regions, as shown in
Figure 2.

Hromadka and Guymon (1982) have shown that
boundary integral methods may be applied to geo-
thermal problems involving soil water phase
change, They applied the complex variable Cauchy
integral theorem to problems where the position of
the freezing or thawing isotherm is determined
directly. The boundary integral approach estimates
heat flux normal to a two~dimensional freezing or
thawing surface. The advantage of this method is
that it requires much less computer storage and
execution time for certain problems than classical
domain methods. '

The heat flux is given by:

Qx+iqy-—-—t<3;—it(a—y (8)

where 0, and are heat flux and 1 = ¥~1. For
any arbitrary closed-contour interior of the
solution domain,

I 0, ds = i Q ds =0 (9)

where n and s are normal and tangential components
of the contour., Equation 9 defines T as harmonic
and is related to the harmonic conjugate q by the
Cauchy-Riemann equations. The complex temperature
is defined by

E(z) = T(x,y) + 1 qlx,y) ao,
where z = x + Lly. Using Cauchy's theorem, the com

plex temperature on the bounrdary may be solved by
the contour integral:

P
L v pE(z)dx
£ (zj) T st I z -z, (an
J
where zy 1s the nth node peoint on T. P, indi-

cdtes the Cauchy principle value, and § is the
interior line segment angle at node j. Equaticn 11
is readily solved by assuming E{z) is described by
straight line segments between each node and by
assuming E£(z) can be represented as a linear poly-
nomial (Hromadka and Guymon 1982). Interior moving
freeze/thaw boundaries are located by an isothermal
change approximation:

Lag =% (Qﬂ)J (12)

where (Qn)j is a normal heat flux component at a
specific location along the phase change front
during a time-step At. Time-steps of one day or
longer may frequently be used because of the time—
consuming phase change process in naturally freezing
or thawing soils. The solution of Equation 11 re-
quires known temperature or known heat Elux con-
ditions on the solution domain boundary, T.

The full system of equations is written in the
form:

K(T,q} =¢ (13

where K 1s a fully populated matrix of known
coefficients and (T,q) is the vector of the complex
temperature Ej'

FIELD DATA

Two types of data obtained at Deadhorse Airport
were used in this study. The first included pro-
perties and dimensions of the soll and pavement
layers. The second type included initial and
boundary temperatures and the measured subsurface
temperatures, which were compared with calculated
subsurface temperatures.

Properties and dimensions of the soils and
pavement were obtained from boring logs (Division of
Aviation 1976) made prior to improving the runway
and from test data developed during reconstruction
of the airport (Ingerscll et al. 1979). Physical
and thermal properties of the materials that were
used in the thermal models are shown in Table I.
Parameters shown in Table 1 for density and water
content were determined from laboratery samples.
Thermal parameters were assumed from USACRREL data.

Upper boundary conditions differed depending
upon the horizontal position, but they were
developed from measured alr temperatures in all
situations. Alr temperatures were adjusted by n
factors (Berg et al., 1978) to obtain the surface
freezing and thawing indexes and surface tempéra-
tures used in the model simulations. A sinusoidal
variation of air temperature coupled with the n-
factor approach was used to approximate wmore closely
the type of analysis an engineer usually performs.
Consequently, the tests of the two models presented
here are conservative.

Approximately 120 thermistors are automatically
monitored by a battery-powered Data Collection Plat—
form (DCP) and data are transmitted back to USACRREL
via the ERTS satellite. Each thermistor is moni-
tored approximately once every five days, and the
temperatures are stored in a computer—accessed
file at CRREL. 1In addition, other subsurface temp-
erature observations were obtained manually three or
four times per summer. Temperature observations
were plotted in a variety of graphs, 1,e., thaw depth
(0°C isotherm) vs time, temperatures at specified
depths vs time and cross-sections of the runway at
various times showing the thermal regime (iso-
therms).



TABLE 1

Material properties below AC pavement.

Dry Moisture Thermal Volumetric Latent heat

Depth, denaity, content, conductivity, heat capacity, of fusion,
Layer Material m g/cm’ % dry wt. cal/em hr °C cal/em” °C cal/cm
A Gravel 0.08-0.30 2.00 9.6 30.95 0,354 11.7
B Gravel 0.30-2.44 1.92 7.0 29.31 0.312 6.8
c Organic  2,44-3.05 0.80 61.6 18.90 0.400 38.4
D Silc 3.05-4.11 1.20 50.7 17.71 0.356 46.2
E Gravel 4,11-10.06 1.68 27.6 29.76 0.368 30.4

MODELING PROCEDURE o v T ' T T T ' T T

Both numerical modeling strategies required
discretization of the domain in order to approximate
inhomogeneity. In the domain method (Figure 1), 126
nodes and 210 elements were utilized. Included in
the element definitions were six parameter groupings
(Table 1) that incorporated the various dissimilari-
ties of parameters and initial conditions. The
boundary integral solution utilized a rescaled
domain so that vertical thermal conductivity was
congtant ahove and below the 0°C isotherm (that is,
ituduen vi, thawed). In the rescaled domain,
valwielric latent heat is adjusted to preserve the
pruper rescaled volumettic properties. The problem
chosen is amenable to rescaling.
domains are sufficiently complicated so that
rescaling to arrive at a Laplacian problem is dif-
ficult or impossible. The boundary integral solu-
tion was based on 28 nodal points with eight nodal
points evenly spaced along the phase-change isotherm
(Hromadka and Guymon 1982).

Both models used identical specified tempera-
ture boundary conditions along the top boundary.

The initial temperature distributions were inferred
from measured subsurface temperatures. Zero flux
conditions were assumed at the bottom and at both
sides in both models.

MODEL RESULTS

Results of the domain solution are showm in
Figures 3 and 4. Figure 3 shows the computed temp-
eratures (dashed line) at a depth of 4.6 m below the
pavement surface and 12.2 m from the runway center-
Iine. Measured temperatures are shown as an
envelope {s0lid lines) for this location. Figure 4
shows the computed thaw depths (dashed line) 12.2 m
from the centerline. The measured thaw depths
(solid lines) are also shown. The envelope of mea-
sured thaw depths results from several temperature
assemblies at different locations beneath the pave-
ment. Results shown for the particular embankment
regime are typical of results throughout the entire
embankment.

Thawing depths predicted by the two modeling
approaches are given in Table 2 for modeling day
number 155. These depths represent the approximate
maximum thawing deptha. Table 2 includes two sets
of predicted thawing depths from the boundary
integral approach, based on step sizes of 6 hours
and 3 hours. As can be seen, both modeling ap-
proaches agree with each other quite closely. More-
over, both approaches agree well with measured thaw
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FIGURE 3 Comparison of measured temperatures (solid
lines) with those computed in the domain solution
(dashed line). Temperatures are approximately 4.6 m
(15 ft) below the pavement surface.
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FIGURE 4 Measured (solid lines) and calculated
(dashed line represents domain method and dotted
line represents boundary integral method) seasonal
thaw penetration. Depths beneath the pavement
surface. Calculations from the domain solution.

depths, This agreement was achieved in spite of the
fact that average sinusocidal air temperature was
used as a surface boundary condition in conjunction
with the n-factor approach. Soil surface tempera-
tures computed using this approach have a root mean
square temperature error of at least 8°C.

In this case, the boundary integral method re-
quired significntly less computational effort than
the domain method; however, this is not a general



TABLE 2 Thawing penetration depths predicted by numerical models and measured

at the airfield {model day 155).

Location Domain
{x-coordinate), solution, Boundary integral solution, m Measured

m mn At = 6 hrs At = 3 hrs depths, m

0 (.7 0.7 0.65 0.66

6.1 8.7 .65 0.64 0.58

7.6 1.1 2.0 2.0 -

9.1 1.7 1.0 1.0 1.09
10.4 2.0 2.3 2.3 1.98
14.0 2.2 2.1 2.2 —_
26,2 2.2 2.1 2.2 ——
44.5 2.4 2.6 2.7 2.72-3,02
50.6 2.4 2.8 2.7 ——
56.7 2.4 2.7 2.8 2.59-3.12

* At equals 12.4B hrs; parameter update frequency equals 124.8 hrs.

tule since the boundary integral method has a
compact matrix that will lead to less efficient com-
putational effort in some cases., Tt is coancluded
that both models can accurately predict the thermal
regime of embankments, provided thermal boundary
condition and domain sclution initial condition
information is available,
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