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The Galerkin finite element method coupled with the Crank-Nicolson tifme advance
procedure is often used as a numerical analog for unsaturated soil-moisture transpor
problems. The Crank—Nicolson procedure leads to numerical mass balance problems which
results in instability. A new temporal and spatial integration procedure is proposed that
exactly satisfics mass balance for the approximating function used. This is accomplished by
fitting polynomials continuously throughout the time and space domain and integrating the
governing differential equations. To reduce computational effort. the resuiting higher arder
polynomials are reduced to quadratic and linear piece-wise continuous polynomial
approximation functions analogous to the fintte element approach. Results indicate a
substantial improvement in accuracy over the combined Galerkin and Crank-Nicolson
methods when comparing to simplified problems where analytical solutions are available.

INTRODUCTION

Finite element techniques have been upplied to numerical
sotutions of motsture transfer in soils by a number of
investigators'-’. A substantial amount of work has been
done on the efficiency and accuracy of finite element
Galerkin techniques® >, In the case of moisture transfer
in unsaturated soils, the equation of state is non-linear
and generally in order to apply the fintte element method
the governing differential equation of state is linearized by
forcing parameters to be constant within each finite
element. Hromadka and Guymon® investigate the
numerical effects of various approximations for determin-
ing the constant parameters, but assume that the time
derivative term is approximated by the Crank-Nicolson
time advancement routine. In this paper the coupled
numerical analogs based upon the Galerkin finite element
methed and Crank-Nicolson method are examined tn
respect to satisfaction of mass balance in the governing
equation of state. A numerical modification to the finite
element analog of moisture transfer in a heorizontal soil
column is presented, and extensions to moisture transfer
in a vertical soil column and a two-dimensional soil
system are included.

TRANSPORT ANALOG

Horizontal infiltration of water into a homogeneous soil
column of length Lhaving an initial water content 8, and
suddenly subjected for time t>0 to a greater constant
water content {f, at x=0is described by:
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where ¢ is the dimensionless soil volumetric water con-
tent; x is the horizontal spatial coordinate: ¢ is time: and
D{) is the soil water diffusivity.

The finite element approeach used to solve equations (1)
and (2) is the Galerkin version of the weighted residual
process®. The solution domain s discretized into the
union of # finite elements by:

L=u L, (33

The water content is utilized as the state variabie and is
approximated within each finite element by:

tx, ty=3 Nx, nt; i4)

where N, is the appropriate linearly independent shape
funcuons 0;1s the state variable values at elémental-nodal
points desuznated by the general summation index jf.

The Galerkin technique utilizes the set of shape [un-
ctions as the weighting functions, which indicates that the
corresponding finite element represeniation for the in-
filtration process is

J{;LD()QJ'—(.U}Nd — ()
X :

Integration by parts expands eguation ¢5) into the form:

HD{U) N, f;Ude} -0
Cx ot

s L

Y {D(m‘_“.

i=1

{6)

where S, is the external endpoints of the one-dimensional
finite element. L, The first term within the braces negates
to zero for interior elements and also satisftes the usual
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Figure 1. One-dimensional nodal domain. (1) = nodal

point number 1; Ry =nodal domain number 1; L~ column
fength

specified (or flux type) boundary conditions of the pro-
blem for exterior finite elements. The remaining integral
term is solved by substituting the appropriate element
approximations and shape functions into the integrand
and solving by numerical integration. The non-linear
nature of the partial differential equation. however,
generally introduces difficulties in integrating equation
{6}. It is customary te deal with this problem by assuming
the diffusivity function to be constant within each finite
element during a finite time interval, A (e.g. Guymon and
Luthin*). The Crank-Nicolson time advancement ap-
proximation has been widely used®® to solve the time
derivation of equation (6). The time derivative could also
be approximated by the Galerkin technique'; however, it
does not appear to be advantageous®.

The Crank-Nicolson formulation reduces equation
(6), where values of soil-water diffusivity are assumed
constant within each finite element, into a system of linear
equations expressed in matrix form as:

Ar [y At ;
{P-&‘-z S}U _{P_E S}() (7)

where P is u symmetrical capacitance matrix and is a
function of element nodal global coordinates: S is a
symmetrical stiffness matrix and is a function of element
nodal global coordinates and constant [inite element
diffusivity coefficients (during time step Atk At is the finite
time step increment; and 6% is the vector of nodal state
variable approximations (volumetric water content) at
time steps k=i. i+ 1.

Hromadka and Guymon® show that he numerical
expressions of the combined equations (6} and {7) results
in an incorrect balance of mass for each nodal solution. To
correct the mass-balance relations, the time-integrated
influx of moisture was equated to the net integrated
spatial variation of moisture content. For the special case
of a Galerkin linear shape-function approximation (with
the Crank-Nicolson time advancement procedurel, a
modified finite element capacitance matrix was deve-
loped; however, a detailed mathematical analysis of the
matrix modification was not presented. The following
discussion addresses the mathematical development of
the modified finite element capacitance matrix {for so-
lution of eguation (1)) and extends the modilications to
include the so-called convection—diffusion class of equa-
tions (ie., a vertical soil column problem), and finaily

develops a two-dimensionat horizontal moisture trans-
port analog.

MATHEMATICAL DEVELOPMENT

Assume the soil column is discretized mto n disjoint
domains by # nodal points as shown in Fig. ! where:

o<l \
=xl0se s —
<3y
Rz {YEY(()}—[:——<\ x{UJ+L}
{8)
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i=1

where t); is the value of state variuble a1 spatial increment
and L, is the redefined spatial length between nodal points
(0,50

The solution of equation (1) within each nodal domain
determines # equations:

]
L{D U;“‘GJ‘T iXER,
x Cx
C Cf} 0
GL[D(G}};}:(“ xeR,
* ' (9)
. o 6
= [D(B) ‘TQ] =S xeR,
X X or
Using a local coordinate system defined by:
dy .
dx (10}

Ri={y0<y<l)

the system defined by equations in (9} can be integrated to

give:

Freel. ¢ ] TG
f [—‘ [D{U){:{-J:]dydr f f Y e
cy [N ct

AL R, At g,
P
D(t) — (dydt = —-dydt
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where the temporal integration is assumed to occur overa
time-step increment of At. Equation (11} can be rewritten
as:
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r(k + 1A !

where & is the temporal time step increment.
The state variable, 8, can be approximated spatially
throughout R by the Ritz formulation: i.e.

Olx, 1g)= 3 Nx)0, (13)
j=1

where N, is the appropriate polynomial spatial shape
function and 0, is the state variable value at nodal points
designated by the general summation index .
Additionally, let 0 be approximated temporaily by:

k+1
X = Y M, 0" (14)

m=—1

where M, is the appropriate polynomial temporal shape
function and #" is the state variable value at nodal points
designated by the general summation index m: m=0
indicates the initial condition, m= —1 indicates the
condition at time step (— Az).

Equations (13) and (14) can be combined as:

Bix, )=Y N (007
j=1
’ (15)

K+l
Up= 3 M, 0"

m=—1

where the ' are known values of the state variable for
time steps (—1, 0, 1, ..., k).
Combining equations (12) and (13} yields:
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The solution of equation (16) where water content is
approximated by equation (15) results in increasing
computational effort as the time solution progresses. By
approximating water content both spatially and tem-
porally by sets of piecewise continuous polynomials, the
numerical effort is considerably reduced.

For discussion purposes, let the {; be uniform throug-
hout R, and soil-water diffusivity held constant during
time step Ai.

I =1,=4Ax;2 (17)
cD

(H—t:O: kAr<r<ik+ 1At

B

Then for water content characterized by parabolas both
spatiafly and temporally:

. 00—20,+0,71 , [40, 36,0,
e | N S
0y, to) [ e e vl
(18)
- 60 =20 +0° |4 =300 —a? "
9(}’0‘ )= I:—Z(At—)—z-‘“* :II + liﬁTJ! +0

where (0, )., 0,) represent typical nodal points separated
by the constant spatial increment Ax; and (0%, 0%, #%)
represent typical nodal points separated by the constant
temporal increment At. The spatial gradient of water
content is evaluated by:

< =07 - o3y
¢y
O
Ax
&0
o =% - 0%)/Ax {(19)
cy
r)(y=%f)=0’; )

where the starred terms represent functions of time as
defined by equation (18). In order to coincide interpoiat-
ing parabolas between nodal points, the average of all
interpolating parabolas within a nodal domain are used.
Accordingly. interior nodal points may have up to five
nodal points contributing to each nodal point’s numerical
solution.

NUMERICAL MODEL VERIFICATION

The proposed numerical scheme was applied 1o the
normalized soil moisture transfer problem:

alg @
GO0 pexx (20)
dx°
with boundary conditions
00, n=(1, )=0 >0 (21}
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and initial condition
v, Gr=1 (22}
The exact solution is the well-known series expansion:

4 . s 3nx .
X x. t)=£(sin zr.\‘e"‘"'"-l-sjn*}--?—n e 4y (23)

For the normalized soil moisture transfer problem. the
numerical approach of equations (16) and {18) reduces to
the following set of linear equations:

Ar
T3AY) {07 =209+ 30D+ 80~ 208 + 05+

¥ 2 A" a b 2 l
5(02 - 207 + 02)) = Z{: L (02 4+ 607 + 3803 + 602 ~ §2)

(=g + 60} + 3805 + 605 - 04y {24)

The first set of braces equals the net integrated influx of
moisture between time steps At and 2Ar (superscripts |
and 2, respectively). the second set of braces is the
integrated variation of water content during the time
advancement. For §=4{Ar}(Ax), equation (24) may be
rewritten as:

~ 08+ 076 = 5)+ U338 + 10} + 0316 = S~ 0

= — 7 =208 + 0+ 016+ 8) + 038 - 16f) +
OO+ 8 — (05 -+ D)) (25)
where superscripts and subscripts refer to temporal and
spatial coordinates. Appropriate integration with respect
to space and time on column-end nodal domains gives for

the global matrix system {with specified boundary
conditions)

1 0 " © L (ﬂ‘
(-5 AW 550 —1 n . EJ‘
-1 G5 1310 6 -5 -1 [} l]‘
1 0 -1 [ER Y TR A T T L N, | 0 i
| : : ‘
| ¢ o -1 153 13+ 108 13 =55 '
| o u 0 0 0 i |
L _
1 1] 0 . 0 0 o]
B 116430 B+ 5 -1 0 0 0 |
-1 164 B IR 16f) 6+ K -1 [0 . 0 I
= o —1 ([T VST ) -1 0 rn' -
0 0 . 1 (KRS J{IEY B L) 13+H,‘hl
0 ] . n o i 1]
F 00 0D ()]
I~ 1 8 . Eil
[ S A
PR ’ \’ " 126)
0 o0 1 -2 |
[_ 0 0 v

where # is the vector of nodal water content values at time
steps j=0. 1. 2 of At increments.
Equation (26) can be simplified by assuming all in-

terpolating parabolas within a defined nodal domain to
be coincident. Thus, lor interior nodal domains the
appropriate mtegrated relations become:

a
1.1—(3{;] Fem (09 = 2000 4 09+ B0 = 208 + 0+
Ax

507205+ 051 = e

(07— 2202+ 03 -

103 42208 + 64! 27

where the first and second set of braces represent the
integrated moisture influx and integrated variation of
water content, respectively, between time steps Ar and 2At
(superscripts j= L. 2). For 7= 2(Ar)/(Ax)* and appropriate
integration with respect to space and time on column-end
nodal domains. the global matrix system corresponding
to the numerical approximations of equation (20) by
equations (16) and (18) is:

[ o 0 0 . 0 7|
=35 224100 (1--37) 5 a |
) oS 1224100 (=5 .. oo

- i(:"

|

7] . i [y b3 022400 =3

Lo . 0 o 0 0 v
t 1 0 4 8 P ) ol
(0 +8n (2216 AL +8 ] . 0 ‘
~ 0 48 (22-lep (480 A P
r Y . 0 0 0 1+87) (22~167) {i+8:.'>!
L o 0 bl 4 0 0 1]
ol
[ T I 0
b= w 8
(S| -2 1 |
vou 0 Y

where specified boundary conditions are included.
Equation (28) can be further simplified temporaily by

letting:

i+1 g
vt~ (29}

=

cr At

Then. combining equations (27} and {29y

1
T L0301 = (0} =031 1101~ 0 (0]~ 03]

A )
:ﬁ{(ofwz:ugw;}mw;+zza;+u;)} (30)

which resuits in the modified capacitance malrix
formulation®:

R A1l 1
ified)= — 31
P (modified) N L “J (31}

To determine the nuerical effectiveness of solving the
normalized soil-water transfer problem by the formu-
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Tuble 1. Comparison of numerical modet® resplts at x =050

Finite Nodal Finite Nodal
clemenz domain Exact  element integration
Time  methodt integration} solution error(*,) error{®,}
0.01 0887 0.901 0.999 11 Y
0.02 0. 786 (833 0975 14 15
0.03 0.697 0.763 091% 24 17
0.04 0.61% 0.700 0.846 27 17
0.05 0,548 0.641 0772 29 17
0.06 0.486 (.588 0,702 28 16
0.07 0.431 0.53% 0.637 32 16
0,08 0.382 0.493 0.578 34 15
4,09 0.339 0432 1524 35 4
.10 0.301 (L414 (474 36 13
0.1l 0.267 0.380 0.430 38 12
0.12 10.237 0.348 0.390 i9 1
0.13 0.210 (319 0.353 30 1G
0.14 0.186 0.292 0.320 43 9
015 0.165 0.368 0.290 43 8
016 0.146 0.246 0.262 44 [i}
.17 0.130 (.225 (.238 46 3
0.18 0.115 0.206 0.215 47 4
0.19 0.102 0.18% 0.195 48 3
0.20 0.091 0.173 0177 49 2

Three nodal point discretization.
Equation {32}
Simplified version of nodal integration using equation (28).

4 o

lations of equations (24}, (27}, and (30), a Galerkin linite
element analog to equation (20) was also determined for
comparison. The Galerkin finite element-matrix for-
mulation (for a linear polynomial shape function approxi-
mation) numerically approximates the normalized pro-
blem of equation {200 within each linite element by:

sot-elof-ad ot S0 )
(32)

where § and P are clemenr stiffness and capacitance
matrices and (6, 0) and (f},, 0,) refer to the etement nodal
and dynamic nodal moisture content vaiues for an
element of length Ax.

By comparison, the modified finite element-matrix
system [or equation (31} is:

L2 - ) 0y 11 —-11f0,)
S{Uj}—r-l’(modlﬁed){f}j}—m[_l IJ{UJ +
Ax[ 11 1|6
ﬂ'[i 11}{01} (33

Resuits from application of equation {11} 1o the pro-
blem defined by equation {20} are shown in Table !. The
matrix system of equation (28) is used to better compare
numerical results to the linear approximating function
results of the Galerkin approximation (tinear polynomial
shape function) of equations (7) and (32). The numericai
approximation was based on a three nodal discretization
of the one-dimensional domain in which two of the nodal
points are specified as boundary conditions; thus the
matrix systems reduce to a single linear equation for btoh
numerical approximations. From Table [, it is seen that
for this problem the numerical approach of equation (28)
provides increasingly accurate results whereas the finite
element approximation progressively gives poorer appro-

ximations for the same [evel of spatial discretization,
Additionaily, the numerical approach of equation {28}
produces similar approximations 1o those obtained by
revising the Galerkin cupucitance matrix in accordance
with equations (7) and (33).

For further comparison, the nodal domain of equation
20} was discretized by five nodal points. Comparison of
numerical solutions by the Galerkin finite element ap-
proach, equations {7) and {32); the revised finite element
capacitance matrix approach, equations (7} and (33); and
the numerical approximation given by equation (26} to
the exact solution at x =0.50 are shown in Table 2. Again,
the nodal integration approach provides significant im-
provement over the finite element method. From Tabie 2,
the finite element matrix system revised by equation (31)
gives similar results to the model of equation (26} for time
greater than 0.06. However, {or the initial instability to the
numerical system {due to the boundary conditions) the
numerical approach of equation {26} provides better
approximations.

EXTENSION TO ONE-DIMENSIONAL
CONVECTION-DIFFUSION EQUATION

The second order linearized partial differential equation:

¢ ) () g
f—klfr-&-kgt—:k],(f; ~eR i34}
ixo o Cx x ‘t

applies 1o a vertical unsaturated soil column problem
where the k; are the appropriate hydraulic parameters.
Discretizing the domain into uniform nodal domains R; in
accordance with equation (8), equation (34) can be
integrated spatially within each nodal domain (o give:

3 0
+J\f\’z(-.0‘dl‘=Jk3i dx (33}
X et

Table 2. Comparison of aenerical model*® resulrs ar x=0.50

Finite Revised Nodal

clement capaciance nlegration Exact
Time methodt matrixd per (26) solution
0.01 1.041 0.989 1.023 0.99%
0.02 0.970 0.941 0.956 0975
003 0.881 0876 0.887 0913
0.04 0.796 0807 0.812 0.846
G.05 0.718 0.73% 0.741 0.772
0.06 0.637 0.674 0.674 0.702
0.07 0.583 614 0.613 (.637
0.0% 0.525 0.55% 4557 0.578
0.09 0.474 0.508 0.506 0.524
0.10 0.427 0.461 0.460 0.474
[t 0.385 0419 0418 0.430
0.12 0.347 0.381 0.379 0.350
0.13 0312 0.346 (0.345 0.353
0.4 0.282 0.314 0313 0.320
.15 (.254 0.283 0.284 0.290
016 0.229 0.259 0.258 0.262
017 0.206 0.235 0,235 0.238
0.1% (.184 0214 0.213 0.215
0.19 0.167 (0.194 0.194 0.195
0.20 0.151 0.176 .176 0.177

Five nodal point discretization.
+  Equation 132).
1 Equation {33}
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Tahle 3. Comparison of rumerical model resalts jor a vertical column

Solution =0 r=>30 Error x
=100
Exact 1 0.276 o, 0
Finite element method 1 0,429 550, 0
[ntegration 1 0.342 240, 3]

Assuming the &, to be constant within each nodal domain
during a time step At. and inlegrating with respect 10 time

gives:
i A Y
ke )dr+- | Jor= k3de); (36)
L
|
Al A

r, Az r, R, T,
where I'; and I, are the spatial and temporal boundaries.
For B approximated spatially and temporally by equation
{18). and assuming coincident parabolic interpolation
functions within each nodal domain R, the resuiting
expression for an interior nodal point #; between nodal
pomts (ff,, ;) is

A5+ A7+ 4,03 =B 05+ B,0) + B0 +

C,05+C, U7+ C,08 (37)
where
A=k, + Sk (At AX) - Sk,
Ay =22k + 10ak,
Ay =k, — 5k, (At/AN) - Sak,
B, =8ak, —8k,(At/AX)+ k,
By = — lbak, + 22k,
By =8xk, + 8k, (At/Ax)+ Ky
Cy= —k 2+ k,{At/Ax)
C,=2xk,
Cy= -k x—Kk,(At/AX)
and where x=2At)Ax),

Disregarding the coincident parabolic interpolation fun-
ction assumption. a soil-moisture transfer mass balance
would occur by averaging all possible parabolic in-
terpolations within each R, Accordingly, for a typical
nodal point 1, interior to the sequence of nodal points (0.
t,, 05 0,4,

1 5, 1
! =20 g
folo gl Ty Uyl 38)

UIR;!l!n:
whereby equation (38} can be appropriately combined
with equation (28) to give the complete mass balance
formulation.

A numerical advantage of equation (37) to a linear
shape function finite element {Galerkin) formulation with
a Crank-Nicolson time step advancement process was
found. The two methods were compared to the exact
solution of the problem

A1) C{ U
TP 139)

cx* Y
with conditions,
o0, n=1,, >0
v, =0, =0

x, 0)=0 0=€x<=%
The well known solution 1o equation {3%) is the
expression;

4 -—”erfc_'iﬂ- + ex 75#1’*1’[ XA
0, "5 @ | OPLR, [ @
(40)

where &, and k, are assumed constant. Equation {39) was
solved for arbitrarily selected values of &k, =25, &,
=0.0625. A time step At =25 was used and eqguation (39}
was modelled by assuming that

0100, 1)= O=r=<250 {41}

in order to obtain a {inite one-dimenstonal domain. For
comparison purposes, 2 two element discretization of
element size equal to 50 was used. A linear shape function
Galerkin approximation in accordance with equations (6)
and (7) was used for comparison purposes. For a total
time equal to 250, the numerical results are shown in
Table 3. Comparison of both numerical methods in-
dicates consistent approximation improvement by using a
model based on equation (37).

EXTENSION TO TWO-DIMENSIONS

The two-dimensional mathematical model for horizontal
soil water transport in a rectangular domain R. where
water content js the state variable is given by:

. 0
[D(U)‘_UJ [D{U}i“] Do HER (42)
~ .

Analogous 1o the one-dimensional case. the domain s
discretized into i rectangular nodal domains by n nodal
points as shown in Fig. 2

R=UR, (43)

Application of equation {42) to cach R, gives
3 col C
LD(U)‘ Uj| 7‘ [D(())(, J=(—. vy e R, Yy (44)
(X cy cy oo

Integrating spatially and temporally on each R, gives:
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Figure 2.

Two-dimensional nodal domain, ®:rz()cial
poimt 1. R =nodal domain number 1; AX ~ x-direction

n
increment; AY ~ y-direcrion increment; R= ( R,

(2o [

Al g, ar g,

(45}
R )
=JJJ:---d!dxdy =12
cl
R, At
or
[J{D((J) }dyd! -+ f f{D(HF }dtdl
3! AY AMoay r
(46)
J[{ }drd\ i=12...n
AXAY T,

where (AX. AY. At) are the spatial and temporal incre-
ments respectively and (I, T, T')) are the spatial and
temporal boundaries respectively. For a finite element
domain discretization, assuming soil water diffusivity
constant within each finite element during a time step A,
equation {46) can be written as:

}dydx {47

A numerical analog can be derived by considering the
normalized twoe-dimensional horizontal moisture transfer
model similar to equations {20), (21). (22),

<yl 0€r <] {481

Assume (! to be approximated spatially by parabolic
interpolating functions. and temporally by a linear in-
terpolating function. The temporal term of (46} is given
numerically by considering Fig. 2: i.e.

Jj()d\dl =—

AN AY

((J Fly+ 0.+ 0,+220, + 220, +

220, + 220, +4844,) 49}
The integrated x-direction influx is:

AY
Sany 0= 202+ 0+ 220, =440, 4+ 220, + 0~ 20, +0y)

(50)

Similarly, the integrated y-direction influx is:

X
22 22, — 20, 20, —
_)4ij() il + 04+ 220, 4220 — 20, - 20, —440;)

51}

Combining equations (50} and {51), the net integrated
influx is, for AX=AY:

1
-1—2-(0, + 100, + 0, + W0, — 440, + 100+ 0, + 1004+ 0,)
(52)

For identical constant spatial increments, the solution
of equation (46) reduces to the one-dimensional problem
of equation {20) for zero y-directional influx. From Fig. 2
and equations (49) and (52}, the problem simplifying
assumptions are:

a0 3

a0

ey

AX =AY

b =0, =0,

0, =0, =0,

b,=0, =0, (53)

/

By substitution. the matrix system defined by equations
{49) and (52) reduce to the matrix system defined by
equation (30).

CONCLUSIONS

The mathematical analysis leading 10 numerical analogs
that preserve mass balance in a horizontal soil transport
problem is presented. Extensions from the one-
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dimensional horizontal soil-transport modei to the so-
called linearized convection- diffusion equation is also
presented. Comparison of numerical resuits to the ap-
propriate finite element numerical solutions indicate
significant improvement when utilizing the mass balanced
schemes.

Extension of the one-dimensional approach 10 two
dimensions 1s additionally included. Although only the
rectangular domain is anaiysed, application of the im-
proved model to irregular domains is accomplished by
using the usual finite element matrices for non-
rectangular regions. and including the mass-balanced
matrix systems for the remaining rectangular regions,

ACKNOWLEDGEMENTS

This research was supported by an U.S. Army Research
Office Contract No, DAAG 29 -79-C-0080.

114 Advances in Warer Resources, 1980, Volume 3, Seprember

REFERENCES

1

5

Bruch. J. €. Jr. und Zyroloski. G. Solution of vertical unsaturated
Mlow of seil water. Soif Sci. 1974, 116, 417

Desai, C. S. Elementary Finite Efement Method. Prentice-Hall.
Englewood Clilfs, 1979

Douglas, J. Jr.. and Dupont. T. Galerkin methods for parabolic
cquations, STAM J. Nwmer. Anal 19707, 575

Guymon, G. L. and Luthin. J. N. A coupled heat and moisture
transport model lor artic soils. Water Resour. Res. 1974, 10. 995
Hayhoe, H. M. Study of telative efficiency ol [inite difference
Galerkin technigues for modeling soil-water transfer. W wier Resour.
Res. 1978, 14,97

Hromadka. T. V. and Guymeon. G. L. Some effects of hncarizing the
unsaturated soil-moisture transter diffusion model, Water Resoure.
Res. in press

Newman. S. P Feddes. R. A and Bresler. E. Finite element analysis
of two-dimensional flow in soils considering water uptake by roots: L.
Theory. Sail Sci. Soc.. Am. Proc. 1975, 39

Price. H. §.. Cavendish. ). C.and Varga. R. S. Numerical methods of
higher-order accuracy for diffusion convection equations. Soc. Per.
Eng. 1968, 243, 293

Yoon. Y. 8. and Yeh, W, W.-G. The Galerkin method for nonlinear
parabolic equations of unsteady groundwater flow. Water Resour.
Res, 1975, 11, 751



