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TECHNICAL NOTE

MASS-LUMPING NUMERICAL MODELS
OF THREE-DIMENSIONAL HEAT CONDUCTION

T. V. Hromadka Il and G. L. Guymon

Department of Civil Engineering, University
of Californin, Frvine, California 92717

A varighle mass-lumping numerical model {nodal domain integration) of three.
dimensional heat conduction it an inhomogeneous continuum is developed. The
domain is discretized by retrchedron-shaped elements and rhe state voriable is
approximated by linear trigl functions. The resuliing model represenis the Galerkin
finite-element, subdomain Intergration, and integrated finite-difference methods as
special coses and aqccommodates both Dirichier and Neumann boundary conditions
similar 0 o Galerkin finite-element model Consequently, a unified domain
numerical model is deveioped that readily represents each of the abavementioned
domain numerical methods gnd an infinity of finite-element myss-lumping schemes
by the specificarion of a single constanr model parameter. Application of rthe nodal
domain integration model to lineqr heat conduction problems indicates that the
degree of model mass lumping must vary to mtinimize the approximation ertor,

INTRODUCTION

Hromadks and Guymon {1-3] examined the finite-difference, subdomain integra-
tion, and Galerkin finite-element methods for the solution of partial differential
equations in one- and two-dimensional problems. They combined these numerical
approaches to obtain a single numerical statement that can represent any of the
numerical methods by the specification of a single constant parameter 5. In this note,
the integrated finite-difference model with triangular elements [4] is extended to a
three-dimensional model with tetrahedral elements.

Reduction of the Galerkin finite-element mass matrix to a diagonal mass-lumped
matrix is a weltknown technique [5]. However, it is imporiant to note that the
so-called mass-lumped diagonal matrix is analogous to the integrated finite-difference
capacitance matrix developed by Spalding [6]. An infinity of mass weightings of
element nodal contributions ¢an be determined directly by introducing an improved
linear trial function in the finite element, where the element-boundary trial function
continuity requirements are relaxed, and then using the usual subdomain integration
version of the weighted residual process, The fact that certain mass-lumping patterns
may improve computational results [7] suggests that an overall domain numerical
method may be developed with a variable mass matrix.
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GOVERNING EQUATIONS AND SET DEFINITIONS

A three-dimensional advection-diffusion process in an inhomogeneous anisotropic
nondeformable medium without sources or sinks may be macroscopically described by
the nonlinear partial differential equation

] oT i) aT 2 aT or
Sk, —ur)+ Sk, L —pr)+ O [k, T =c¥
ax("ax ) 3y (yay VT) dz (’az WT) ¢ @

where x, y, and z are spatial coordinates; ¢ is time; K, = K,,, Ky:Kyy, and
K, = K, are principal-axis values of conductivity (e.g., Fickian diffusivity or thermal
conductivity); C is a capacitance coefficient; T is the state variable (e.g., temperature);
and U, F, and W are x, y, z-axis advection components (e.g., fluid velocity). It is
assumed that Eq. (1) describes the governing flow process in the nondeformabie global
domain of spatial definition Q with global boundary I'. In vector notation, Eq. (1)

may be written as
aT
[q'drwfcé?dV (2)
I Q

where dI" is the outward unit normal vector to surface I, ||dIY| = dA4, and

qE(Kxg—iuUT)i+(Ky%;:-VT)j+(Kz ?,’;” WT)k (3)
The numerical approximation of Eq. (3) requires a discretization of the problem
domain §2. The usual subdomain (control volume) and finite-clement discretization
patterns differ. However, by overlapping these two discretization patterns, a third
discretization is developed that is composed of smaller nodal domains. For an 7-nodal
point distribution in £ with associated subdomains R; and boundaries B;

Q2 R; “)
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Ry =R; = R UB; (5)
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Combining Eq. (2) with Egs. (4) and (5),

fq-dI‘=f q-dl  and ]cng=f cg_TdV )
r UBy 2 URj g

A finite-element discretization of £ is defined by

Q= U (N
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where each finite element € has a boundary T¢ where
Q° =Q°f = Qeure (8)

A set of nodal domains szf can be defined for each finite element as the intersection
with associated subdomains

of =R; N Qe (©)

This set of nodal domains is defined for each finite element £2° by the index of
element nodal numbers

Qf=uaf jes (10)

where S€ is the set of nodes assigned to £2€.
Expanding the transport intergral of Eq. (3) gives
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where I,,1,, and I, are the direction cosines of dF, and dA is the differential surface
area. Equation (11) can be written as

feq-dl’=[ (Kx%glx+Kngy+Kxglz)M
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where I'? is the boundary of finite element £2°, The first integral in the expansion of
Eq. (12) satisfies Neumann boundary conditions on T'? or preserves flux continuity
{due to conduction processes) between finite elements Q. In the global assemblage of
UQ?, the first integral in the expansion of Eq. (12) also satisfies Neumann boundary
conditions on the discretized approximation of global boundary I'" by I'?. Using Eq.
(12), the element matrix system is given by

[ q'd'l’f-f UTi + VTj + WIK] - dr ‘f T avy = ()
rf-rfnre rénre e ¥
F=0 T f

jEes*® (13)
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NUMERICAL SOLUTIONS

The state variable T is assumed to be approximated by a linear trial function 7
in each finite element 2° [5]. Therefore

T =T =ZLT} (14)

where the L; are the usual tetrahedra) volume local coordinates in °, and 1' £ are
nodal point values of the trial function estimate 7¢ in £°.

To simplify the various weighted residvual domain model derivations, the follow-
ing description variable is used:

i) oT ¢ aT a aT orT
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(Iax vr T Kzaz WT at

dx ay \ 7 oy Az
x,y,2)€Qd (15)
Galerkin Method of Weighted Residuals
In local element §2°,
j.¢QdVEO (16)
af

generates a Galerkin finite-clement matrix system for approximation of Eq. (1} on ¢,
Equation (16) can be linearized by assuming all parameters quasi-constant during a
small time step At. The x-direction terms of Eq, (16) are given by
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where the first integral satisfies Neumann-type boundary conditions on global
boundary T or conduction flux continuity between £,
From Fig. 1, the shape function gradient in Eq. {17) is

%:i(ﬁ)— Va1 (18)
ax  Ax \Ve Ve ax (hy, x)
Thus,
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Fig. 1 FProjection in the x dirsction of nodal point 1 onto the triangle face
12, 3, 4).

where {4,,x) is the projection of the triangle face [2, 3, 4] onto the v, z coordinate
plane. Simplifying Eq. (19) and substituting into Eq. {17) gives

2 " h: TS ¢
f (Ke il Te - e aTe)L] av = K_S Z‘bt (.Als JC) UE Lblﬁ L (20)
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where V¢ is an element volume and #; are coordinate cofactors. The y, z direction
terms are determined analogously. The time derivative term of Eq. (16) is modeled by

€
2L 1y av = Ce/ Lil; %T: av 1)
of af

Subdomain Integration

A cover of finite element 2 is given by the union of nodal domains ﬂi where
Fe 8¢ For a tetrahedral finite element, local nodel domain §5 in ¢ is assumed to he
defined by Fig. 2. The subdomain integration method solves Eq. (1) in ¢ by

f &dV =20 jES® (22)
(4

2

For the x-term transport components of Eq. (1),

8 aT* 3 ‘e .
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Fig. 2 Nodal domain Q, : geometric definition.

where Mf = Jqaf C*(3T%/ar) dV. Expanding Eq. (23) gives

[e Ke%TedAx/. K‘*%ZedA [U‘?—udV M (s
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The first integral in Eq. (24) satisfies Neumann boundary conditions on I' and
conduction flux continuity between §2°, similar to the Galerkin formulation. From
Figs. 1 and 2, the gradient terms of Eq. (24) are

ke 3T° dAx_Uea_ff[ av = ke TOTE @ix) e hTf v
e

* ox rf_rfm“-’ 6¥e 3 6Ve 4

(25)
For the time derivative component of Eq. {24),
y aTe € - e
Mf = Ce———dV C"—f T¢dV jegs (26)
ﬂf Qf

integrated Finite Difference

in this version of the subdomain integration method, it is assumed that
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/T"a‘V=Tf/dV 7
Ry R;

For a linear trial function T¢ in each £2°, the transport terms of Eq. (1} evaluated on
each B; determine a conduction matrix identical to the Galerkin and subdomain
integration approaches previously derived.

Nodal Domain Integration

The nodal domain integration numerical statement for solution of Eq. (1) on Q°f
is given in element matrix form for Qf by

KT® + PP()T° = L° (28)

where K¢ is the sum of element £2¢ conduction and convection matrices given (for the
x term) by Egs. (20) and (25), L? is a load vector of boundary conditions,

n 1 1 1

cepe 1 7 1 1
dn+t3) 11 1 g 1

1 1 1 'rﬂ

and T¢, T are the vectors of the Q€ nodal values and the time derivatives of the nodal
values,

In Eq. (29), the Galerkin finite-clement, subdomain integration, and integrated
finite-difference numerical statemetns for a linear trial function in Q¢ are given by
n=(2, R, °), respectively.

Pé(n) = (29)

SENSITIVITY OF DOMAIN MODELS
TO DEGREE OF MASS LUMPING

To illustrate the sensitivity of the class of domain models to the factor n, two
linear heat conduction problems (Figs. 3 and 4) are modeled to examine the
approximation error for various values of mass lumping.

Using the mean relative error as the measurement, the finite-element mass matrix
was varied by trial and error until a value of n was determined such that the time step
advancement (Crank-Nicolson approach) resulted in the minimum error. Plots of
optimum values from a typical simulation are given in Fig. 5. Both two- and
three-dimensional solutions indicate that the integrated finite-difference approach
reduces the mean relative error when the state variable gradient is severe within a finite
element, and a subdomain integration analog best serves a milder variation of the state
variable in a finite element.
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Fig. 3 Test problem 1. Thermal diffusion from a
long heat source strip of width W that produces an
instantaneous step change in temperature at T,.
Exact solution given by T(x)=7T, (erf u, —erf
u,), where v, = (x — W)/(4ar)¥? and u; = (x +
W2 f(4at)/?,

CONCLUSIONS

A nodal domain integration numerical model is derived to approXimate a
three-dimensional anisotropic heat conduction process in an inhomogeneous con-
tnuum. The model is found to represent the Galerkin finite-element, subdomain
integration, and finite-difference methods as special cases. In addition, both Dirichlet
and Neumann boundary conditions are accommodated as in a Galerkin finite-element
numerical model. Application of the model to linear heat conduction problems
indicates that the finite-element mass matrix must vary with time to provide an
optimum numerical solution.

¥

Fig. 4 Test problem 2. Thermal diffusion from a
rectangular source that produces an instantaneous
step change in temperature of T, Exact solution
given by T(x) = (T[4} (exf u, —erf ) (exf v, — esf
v, ), where u, = (x — W/2)/(4ar)V?, u, = (x + W/2)/
o), v, = — L{D(4at)"?, and v, =@ + LY
(4af)”2.
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Fig, 5 Optimum mass weighting n-factors for two- and three-dimensional finite-
element solution of test problems.
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