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CHAPTER 5

Modeling of Groundwater
Response to Artificial
Recharge

Gary L. Guymon
T.V. Hromadka i

Department of Civil Engineering
University of California at lrvine
Irvine, California 92717

This chapter introduces the reader to numerical modeling technigues that
can be applied to the hydraulic analysis of artificial recharge of groundwater.
Numerical modeling techniques applied 1o mathematical models of ground-
water recharge imply the use of modern digital computers, which are now
widely used for many engineering and scientific applications. Improvement
in numerical techniques and computers now make it possible to solve rather
complicated porous media flow problems on miniclass or even microclass
computers.

Numerical models of regional groundwater flow have been widely used
for a number of years to aid in aquifer management. Reviews of the basis
and the use of such models can be found in Freeze and Cherry [1], Remson
et al. [2], Pinder and Gray [3], and Bear [4]. Usually these models are two-
dimensional models of the zone of saturation where the coordinates are
ariented in the hornzontal plane. The vertical direction is regarded as an
integrated average wherein vertical velocity componerts are assumed to be
zero. Both the finite-element and finite-difference approaches are used as
numerical analogs of the governing two-dimensional, dynamic equation of
state. In several special cases, three-dimensional models have been ad-
vanced, and models that include the unsaturated zone have been developed

(51

Obtaining and applying a model that is already developed is sometimes
difficult for several reasons. The most often encountered difficulty is that
after a model is developed, verified, and applied there are inadequate re-
sources for maintaining the model and servicing it. All modern software that
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130 OVEAVIEW AND FUNDAMENTAL CONSIGERATIONS

is widely used requires a central enterprise for maintaining the software
usually the vendor. Second, numerical groundwater models, although ele:
gantly constructed to solve the problem they are designed for, are oftentimes
not truly user-oriented. Finally, another troublesome problem that may arise
in adapting a model to a new environment is that sometimes models may
be machine dependent. It is sometimes an unsurmountable task to adapt a
model to a different computer from the one it was developed on. Ag
consequence, it may be more practical in some cases to start from scratch
and build a new numerical model.

Notwithstanding these problems, numerical modeling, when combined
with appropriate geotechnical exploration and hydrologic analyses, is a pow-
erful tool. The use of existing numerical models or the development of a
new mode! require some understanding of not only the physical and chem-
ical processes involved in artificial recharge and groundwater movement but
also of the basic mathematical principles needed to develop a numerical
analog. This chapter is designed to, in part, meet this need. Only a very
limited treatment of numerical techniques is given here; the reader should
consult the several referenced texts for additional information [1-4].

THE MATHEMATICAL PROBLEM

The level of complexity of the mathematical problem ranges from quanti-
fying problems involving direct injection into fully confined aquifers, to
seepage from recharge basins into a complicated porous media involving
both saturated and unsaturated flow phenomena. In some cases the move-
ment of a second phase, air, may play an important rcle. Both saturated
and unsaturated flow processes must be evaluated to realistically model the
hydraulic behavior of recharge and aquifer response. Similarly, direct re-
charge into unconfined aquifers should include an analysis of unsaturated
flow phenomena as well as saturated flow phenomena, particularly if well
perforations extend throughout the alluvial column and if the process is
dynamic (for example, due to the gradual clogging in well perforations and
adjacent porous material). Only in the case of direct recharge into a fully
confined homogeneous aquifer do we have the luxury of considering satu-
rated flow only.

Consider the most complicated case first. To make the mathematical
statement as simple as possible, we will assume a homogeneous nondeform-
able porous medium but will allow hydraulic conductivity to vary direction-
ally (i.e., an anisotropic medium). We wiil not include a consideration of
air flow; we will deal only with water flow. Continuity for a differential
control volume may be expressed in Cartesian coordinates as

av, dv, ov. 20

ax  ay az ot (
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where x, y, and z are Cartesian coordinates; ¢ is time: v,, v,, and v, are
velocity fluxes in their respective directions; and 8 is the volumetric moisture
content. For simplicity, fluid sources and sinks are not included. Darcy’s
law is

v, = — K, Q_dj
dx
ad

v, = —-K, o (2)
_ o
.= K az

where K., K,, and K, are the principal direction hydraulic conductivity coef-
ficients and ¢ is the total hydraulic head where

=0+ h (3)

where ¢ is the pore water pressure head and h is the elevation head. If 2 is
oriented vertically upward, (h = z). Equations (2) and (3) only apply to
porous media flow where inertial forces are negligible (i.e., a Reynolds’
number less than 3). Substituting, Equation (2) into Equation (1) yields

i o dd
a(K‘ 3x) G(Ky 3}’) &(K: 52) a6
+ —_

+ =
ox ay 0z ot (4)

To solve Equation (4), there must be a known relationship between ¢

, 06 .
and . We have two options: we can replace i with

a8 . 00
P (3)
or replace ¢ on the left side with a function of 8, yielding the diffusion form
of the equation. From a numerical standpoint it is usually better to modify
the right-hand side of Equation (4), and leave Equation (4) with total head
as the state variable. Equation (5) may exist, provided there is a unique
single-valued function 8*, which is given by

|&
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] LU <0
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The condition (¥ < 0) represents unsaturated flow, and the condition (b =
0) represents saturated flow. For unsaturated flow, we must know the fune.
tional form (6 = 8(4) ). the so-called soil moisture characteristics that must
be determined in the laboratory using soil samples or must be inferred from
data, such as that published by Guymon et al. {6].

Furthermore, when ( < 0}, the hydraulic conductivity is a function of
witer content or pore water pressure; i.e., (K = K({) ) and this function
must be determined by laboratory analysis of soil samples or inferred [6).
For unsatured flow, Equation {4) is nonlinear since the hydraulic conduc-
tivity coefficients are functions of pore pressure head. As long as the tem-
poral term exists, Equation (4) is a parabolic equation.

To solve Equation (4), we must have boundary and initial conditions,
Generally, these are of the form

Boundary b = o(s) i 0
Conditi o
onditions £=qn(s)/K,, 150
(7)
Initial

Condition G o= dylx,yy ,i>0

where 5 is a coordinate tangential to the solution domain surface, n is a
normal coordinate to this surface, and g¢,(s) is a flux condition that may be
negative, zero, or positive. The first boundary condition represents a spec-
ified hydraulic head along the boundary. Since it is permissible for this
boundary condition to vary with distance along the boundary, it may be a
function of distance. s. Also, the boundary condition may vary in time in a
step function manner or other known way. The second boundary condition
deals with a flux condition normal to the boundary surface. Oftentimes the
hydrologist tries to locate a boundary so that the flux is zero. If, unfortu-
nately, a flux condition does exist, estimates of flux normal to the boundary
must be made by employing Darcy’s law. This condition may vary as a
function of distance along the boundary and may vary in time in some
prescribed manner. Finally, it is usnally the case that we have mixed bound-
ary condition problems. A portion of a boundary may have a prescribed
head while other portions may have a prescribed flux condition.

Most applications to groundwater flow problems have involved two-
dimensional solutions. In order to develop a two-dimensional equation there
are several tricks to manipulating Equation (4}. If we assume flow in the z
direction is zero, y is vertically up and x is tangential to the earth’s surface
(horizontal), Equation (4} becomes

HKS/ax) (K SbIy) 0%
ax dy ot

(8)
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which for unsaturated flow is a nonlinear parabolic partial differential equa-
tion. The total hydraulic head is now (¢ = & + y). Equations (5), (6), and
(7) are required to solve Equation (8). For saturated flow, i.e., the entire
solution domain is saturated, Equation (8) becomes elliptic. The right side
of Equation (8} is identically zero. When the aquifer is homogeneous and
isotropic, [K, = K, and K # f(x.y)}, it yields the well-known Laplace equa-
tion, which is independent of aquifer parameters; i.e.,

Vi = 0 ©)

Only boundary conditions determine the solution of Equation {9).
Now if we again assume flow in the z direction is zero, but orient both

the x and y coordinates in a plane tangential to the earth’s surface, Equation
(8) is correct for purely unsaturated flow; however, representing temporal
variations for fully saturated flow, the right side is not zero but becomes a
function of total hydraulic head and storage properties of the porous media:
a(T, adlox) . a(T, od/ay) Sa_hj

dx ay Y.

(10)

where H is the total saturated thickness (unconfined aquifer) or is equai to
& (confined aquifer), § is a storage coefficient, and T, and 7, are the trans-
missibility coefficients that depend on H in the unconfined case. The storage
coefficient is substantially diffecent in the physical process it represents and
in magnitude, depending on whether a confined aquifer or free water surface
(unconfined) aquifer is being studied. We assume fluid velocity in the z
direction is zero. This assumption (the Dupuit assumption) is reasonably
true in fully confined aquifer problems and is only a rough approximation
in unconfined aquifer problems. Again, Equation (10) is a nonlinear para-
bolic equation that requires boundary and initial conditions of the form of
Equation (7) to solve for the state variable ¢.

To this point, we have been using Cartesian coordinates to lay the
framework for a mathematical model. Other forms of coordinates are useful
also. For direct injection of water into a confined aquifer, cylindrical coor-
dinates are the best to work with. If we assume (K = K, = K,), Equation
(10) becomes the linear one-dimensional equation (for the case of a ho-
mogeneous, isotropic, confined aquifer):

#d 19 So
— t = -i) = 3% (1D
ar r ar K ar

where * is the radial coordinate from the well. We are assuming that veloc-
ities in the vertical direction are zero and that there is no movement of
water in a circular direction around the well; i.e., water moves outward
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from the well along radial lines that look like the spokes of a wheel. Tq
solve Equation (11), suitable boundary and initial conditions are required
One of the boundary conditions is at the well perimeter, where rechargé
rate or hydraulic head may be specified. Because of clogging phenomena
this boundary condition may be dynamic. !

Now that we have developed several forms of equations describing
porous media flow, we can conceptually consider the nature of the problem,
Our approach has been to use physics-based laws or principles, and thus we
have developed deterministic equations. That is, we have not considered
probabilistic processes although by nature, porous media and soils are ba-
sically discrete. Freeze [7] has questioned our usual deterministic view of
porous media flow. There is a wide statistical variation in the field param-
eters (e.g., hydraulic conductivity) that are included in our models. In spite
of these uncertainties we will continue to take a deterministic view in this
chapter.

Although several special analytical solutions have been obtained for
important groundwater flow problems, general solutions are usually re-
quired. This is particularly true for artificial recharge analysis. There are
very few useful anatytic solutions available for practical applications. As a
consequence, the remainder of this chapter will present numerical analog
techniques of which the most prominent are domain methods: finite differ-
ences or finite elements. Before discussing these, however, we will discuss
some mathematical concepts that are useful to not only understanding nu-
merical analogs but are essential to successfully applying these techniques.

The first concept is that of a solution domain. A solution domain for
studying groundwater recharge consists of a finite three-dimensional space
of soil and water surrounded by a closed surface. The boundary of the
solution domain is defined such that boundary conditions are known or can
be reasonably inferred. For this reason, these types of problems are often
referred to as boundary value problems, and the accurate specification of
boundary conditions is an important part of the problem. Such a domain is
shown in Figure 5.1. In this case, Equation {(8) applies to the entire solution
domain. An example of each type of boundary condition is shown; thus,
for such a problem, the numerical analog must accommodate such condi-
tions. Also shown is an internal interface condition requiring special nu-
merical considerations since at this interface a parabolic equation (unsaturated
zone) becomes an elliptic equation (saturated zone).

Upon defining a solution domain, initial conditions must be specified.
Such conditions are usually specified at discrete points in the solution do-
main. These points are dictated by the discretization required in order to
develop a general numerical solution, the second important concept. Figure
5.2 shows an example solution domain that has been discretized into sub-
domains. This example depicts a typical finite element solution. Discreti-
zation is controlled by a number of factors related to the availability of
parameters and the requirements for the density of solution results. This
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Figure 5.1 Example solution domain showing boundary condition forms and an
internal interface condition.

Figure 5.2 Discre-
tization of solution
domain.
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example assumes that more accuracy is required where subdomains are g
Consequently, a particular numerical method may be required. Also nglt?ll.
that the solution boundary will involve some geometric approximation, 1§e
this case straight line segments approximate the solution boundary geo;m:
try. The discretization assumes lumped average parameters are available for
each subdomain. This may not be the case, requiring calibration of the
model before it can be applied to a case study. All models require some
level of calibration if they are to yield useful results.

The final important concept is verification and sensitivity testing of the
numerical model. Guymon et al. [8) have identified four general areas of
uncertainty in numerical models, as follows:

1 Choice of mathematical model and numerical analog
2. Spatial and temporal lumping of parameters due to discretization

3. Uncertainty in boundary and initial conditions and approximation of
the conditions '
4.  Uncertainty in parameters

The total model uncertainty or error is some function of all of these. Sep-
arate errors can be evaluated by comparing numerical results against known
analytical solutions. For instance, discretization effects can be studied by
comparing various levels of discretization against available analytical solu-
tions. Such solutions only exist for linear problems. For nonlinear problems,
true verification of a numerical model can only be accomplished by com-

paring numerical results against prototype data or approximate analytical
solutions.

FINITE-DIFFERENCE METHOD

Of all of the domain numerical analog methods, the finite-difference method
is perhaps the easiest for the hydroiogist to envision. The most widely rec-
ognized application of finite-difference techniques is to one-dimensional flow
and two-dimensional flow in the horizontal plane. For example, see Mc-
Whorter and Sunada [9] and Bear [4].

A finite-difference scheme can be constructed by any suitable discre-
tization of the total solution domain and application of Darcy’s law, Equa-
tion (2), and continuity. We will take this simple approach here, applying
the method to a two-dimensional horizontal aquifer. By using finite-differ-
ence approximations for the flow equation, Equation (10), a numerical model
can be developed that may include the effects of recharge or accretion. In
the model, the soil matrix is assumed nondeformable and fluid compressi-
bility effects are assumed negligible. The spatial variation of all parameters
are assumed to be negligible in the vertical direction and linear in the hor-
izontal (x,y) directions.
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Since the soil-water is assumed incompressible, a volumetric control
volume balance can be made, equating inflow of soil-water across a control
volume boundary, I, to the rate of increase of soil-water volume in the
control volume, Q. Figure 5.3 shows a typical control volume, {1, with
boundary (I' = I', + I, + I'; + I'y). In the finite-difference model developed

]
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Figure 5.3 Finite-difference discretization scheme.
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here, the groundwater basin is approximated by a mesh constructed of lines
parallel to either the x or y axis. Tyson and Weber [10] discuss a Californig
Department of Water Resources model in which flow directions are oriented
from node to node in a discretization scheme based upon variable n-sided
polygons. This method has been widely used in a number of groundwater
basins in California and elsewhere, but is not discussed further herein,

At the center of each resulting control volume is a nodal point, P,
From Figure 5.3, the control volume balance is given by !

|
AY (— K,h@) —AY ( Kxh@) 4 oax ( K‘.h@)
9x/ |p, dx )Y

I,
- AX (— Kyh@) = AXAY (S@)
rs dy ot

(12)

+ (RAXAY)

ry 0 n

where R is the soil-water volumetric recharge rate per unit ground surface
area, assumed uniform on ; and § is the apparent specific yield that ex-
presses the instantaneous volumetric soil-water removal (or addition) to the
change in the volume of the aquifer below the water table.

In Equation (12), the soil-water flow rate terms are defined on the
boundaries of {, which are located midway between nodal points. Addi-
tionally, the volumetric rate of soil-water flow into (1 is determined by the
Darcian flow rate multiplied by the cross-sectional area of flow, which de-
pends on the width (Ax or Ay) and the height of the water table, /1. above
the impermeable underlying base.

Because the energy head ¢ is related to the variable 2 (where & = h
+ x), the mathematical model is nonlinear and analytical solutions of the
model are unavailable for most problems.

However, a numerical solution of the model can be determined by
approximating the space derivatives at the midpoint and time derivatives
for a small duration of time, recalculating transmissibility parameters based
on the new estimates of the model variables, and then repeating the ap-
proximation procedure. The various rate and volumetric equations that are
applicable to each control volume are simplified by assuming

]
AY (— thi‘k) ] = AY (_ K,.h@) | (13a)
ax/ |y, ox | Y4

(=2 . »v)
(13b)

(yp-¥)

[ ab\ | 13
AXAY (sf'ai-‘:)% (13¢)

(RAXAY) l = AXAYR]

i

AXAY (Sag) ‘
ar 0
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where (x,, y) are the coordinates of nodal point, P, and all parameters are
held constant for a specified period. The simplified equations are approxi-
mated by finite differences, as follows:

o)

|
((bz.' - cb'—l )
= — — + (KA k. __Trlys
> [(K,h) - (K.h) ’P] AX (14a)
AXAYR |l = AXAYR,, (14b)
(xg.¥)
‘ @ _ (d)k+l _— d)k)
AXAY (Sat) 'h“\”] = AXAYS, A {l4¢)

In Equation (14), R, and S, , are parameters evaluated at nodal point P,
In (14c), the superscript & indicates values of the variable, &, evaluated at
time (¢ = kAr), where At is some timestep size. It should be noted that the
finite-difference approximations are based on the assumption that ail pa-
rameters vary linearly between nodal points; consequently, other approxi-
mations can be developed assuming more complex variations of the model
parameters.

The numerical analog is to first estimate all parameters based on the
known values of & (and k) at some time level (r = kAr). If (k = 0), then
the model time is zero and all values of & are to be defined by the initial
condition of the problem. The second step of the algorithm is to compute
values of the variables &% - ! from the several nodal equations developed by
applying Equation (14) to each nodal point in the problem domain. The
third step is to recompute the various parameters and the groundwater table
depths, A, at each nodal point based on the new values of ¢, and then
proceed to steps one and two.

From Equation (14), a nodal equation can be written as

- (¢r+l d) ) (d)u — d)i—l.') (d—’r.—l B (h:)
— Wir1y — Yiy) RS S ek T4 — Ayl Negs
C, % AY + G, % AY - C; NG AX
. A
+C4&1“5?'u——QAX+R AXAY = §,, (4 AIMAXAY

(15)

where the coefficients (C,, C,, C;, C,) follow from Equation (14a). Rewrit-
ing Equation (15) with respect to nodal point values of & gives
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Ay Ax Ay Ax A
2o ¥ ey (e
d)“ (Cl Ax + C, Ay C3 Ax + Oy Ay) + (b,l_,( C, Ax)
Ay L Av ;
+ ¢‘1+L;‘ (_ G E) + d),.f—z (_ G K;) + d):.1+( (— s ;—\—i)
_ (of) — of)
+ R, AXAY = §,; AXAYT— (16)

Applying Equation (16) to each nodal point in a #-nodal point mesh of the
problem domain results in a system of n-linear equations that can be Written
in matrix form as

Céd+R=S5¢ (17)

where C is the global matrix of coefficients from Equation (16); R and §
are arrays using parameters describing the recharge rate and apparent spe-
cific yield at the nodal points; and ¢ and ¢ are nodal point values, and the
time derivative of nodal point values defined by

& = 1 (@4~ o (18)

For groundwater basin modeling problems where the water table varies
slowly, the C, R, and § arrays are computed based on the values of b at
timestep k. To better estimate the water table gradients, however, the &
vector contribution may be computed as an implicit expression giving )

CLO - &k +edk1] + R = § (! — ¢9yar (19)

where (0 = e < 1). For (¢ = 0), an explicit algorithm results. For (e = 1),
a fully implicit algorithm results, For € = !4), the well-known Crank-
Nicolson algorithm results. Stability and convergence criteria for the various
time-domain solution techniques are discussed in McWhorter and Sunada
[9]. Equation (19) can be rewritten into the more convenient form

eC — S/At[f 51 = [(e ~ 1) C — S/AI]f d* — R%, () <€ =<1 20y
-~ 2 b - = YA et — R {

The superscript notations on the parameter arrays indicate that values are
calculated at timestep k. The matrix system of Equation (20) can be solved
by iteration or the Gaussian elimination method to solve for k-1, In Equa-
tion (20), the constant head boundary conditions are specified in setting

b= &%, = &, (boundary condition) 21)
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FINITE-ELEMENT METHOD

The finite-clement method is now widely used to solve regional aquifer
problems posed in a horizontal two-dimension scale as well as vertical slice
two-dimensional scales. Bear [4] and Pinder and Gray [3] review some of
these efforts. Some authors perceive several advantages to the use of finite-
element methods over classical finite-difference methods. The most often
cited are the following:

1. Ease of using a variable arbitrary discretization mesh

2. Ease of incorporating boundary conditions without special gradient
approximations

3. Ease of dealing with heterogeneous-anisotropic domains

There are two basic ways of developing a finite-element numerical
analog: the variational functional technique or the Galerkin technique. Both
methods lead to identical results for the type of symmetric problems we are
dealing with here. Because the Galerkin technique is somewhat more gen-
eral and is widely cited by those applying finite element methods to porous
media flow problems, we shall base our development on this method.

The Galerkin finite element technique is basically a rule for reducing
the governing partial differential equations to a matrix statement involving
a matrix of known elements and a matrix of unknown state variables. The
Galerkin formulation solves the governing partial differential equation by
setting the governing equation orthogonal to some weighting function:

f(B(dn) ~fiw =20 (22)

where B is a partial differential operator (operating on the variable ¢}, fis
some function, and w is a weighting function. Since the horizontal two-
dimensional problem was studied in the previous section, the vertical slice
problem will be considered here. Using Equation (8} as the governing equa-
tion, Equation (22) becomes, on substituting Equations (8) and {5),

Je [a(k‘ sbjax) (k, ablay) 9*@} N.d = 0 23)
9 ox ay at

where e represents a particular finite element domain (¢ and w equals N,.

The next step is to define a finite element shape, which may range
from triangles to quadrilateral shapes with special curved sides to geomet-
rically simulate the boundary. In this derivation we will illustrate the finite-
element method by using the commonly used triangle (shown in Figure 5.4).
Finally, we make an assumption approximating the state variable within this
domain and on its boundary; i.e., we specify a trial solution function such
that
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Figure 5.4 Finite-element ‘
triangle. y

b =3 Ndy (24)

where & approximates &, &¢ are the nodal values, and N, is a shape function.
For simplicity we shall assume N, is a linear polynomial function of space,
requiring three vertex nodal peints in triangular finite element (e,

Equation (23) is integrated by parts, Equation (24) is substituted into
the result, and the indicated differentiations and integrations are carried out
over element (¥, yielding the element matrix equation

S ol + P ok =0 (25)

where element matrices are given by

Ke %) = (Vi) (Vi2yzs)
8 = 2A° ) = ayn) (26)
symmetrical {(y1:)
Ke (Xﬁs) = (Xi3%23) (x12%23)
+ . (x%’s) = (xlzxn)
44¢ . : '
symmetrical (xf2)
where (y,, = y, — y)and (x,; = x, — x;} and
. 21 1
4 ¢
P = (E’% 1 2 1 (27)
. 11 2

and {¢}¢ is a vector of nodal state variables, {¢}® is a vector of nodal state
variable derivatives with respect to time, and A¢ is the element area. Zien-
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kiewicz [11] gives complete details on the derivation of element matrices
and useful matrix formula. Each element matrix is a function of lumped
element parameters and the global coordinates of its nodes. In order to
carry out the required integrations, it is assumed that the parameters are
constant in each element. Equation (25) is strictly applicable to interior
elements or where there are no specified element boundary conditions.

The next step after deriving the completely general element matrix
equations is to assemble each element matrix equation into the global system
equation:

S{o} + Pld} = {F} (28)

where § and P are square-banded system matrices that are functions of the
element conduction and storativity parameters and spatial discretization, {¢}
and {¢} are vectors of the unknown state variable and its time derivative,
respectively, and {F} is a function of specified boundary conditions.

Algorithms for assembly of the system matrices, Equation (28), are
given in several texts: Zienkiewicz [11], Myers [12], and Segerlind [13].
Generally, the approach in a computer program is to initialize the matrices
to zero and then add in each element contribution in a way such that each
node equation will have all of the element contributions accounted for.
Specified boundary conditions are conveniently handled by entering the
boundary condition in {F} at the appropriate node number level, entering
a 1 on the diagonal of §, and zeroing out all the other matrix elements
contributing to that node equation. Natural boundary conditions, i.c., zero
flux conditions, are automatically accommodated without any special pro-
visions. Flux boundary conditions are entered into {F} as described in Myers
[12].

We are not yet finished, however, with Equation (28) since a numerical
method for dealing with the time derivative is required. A finite-difference
approach seems to be preferred by most investigators [3]. A general finite-
difference formulation of the temporal term in Equation (28) is given by

| _
[At P+e S] b = [A—[ P-(1-¢ sJ O+ eFN o+ (1 - F  (29)

where At is a specified timestep. For (e = 12), the Crank-Nicolson method
results, for (¢ = 1) a fully implicit method results, and for (¢ = 0) a fully
explicit method results. The horizontal two-dimensional problem model can
be developed by following the previous derivation and using the appropriate
governing flow equation.

Computer programs written for the finite element method are com-
monly written in FORTRAN language. Full advantage of the symmetrical,
banded nature of the system matrices is taken to minimize computer mem-
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ory requirements and to maximize the solution speed. Matrix solutions ate
generally by Gaussian elimination.

An excellent example of applying the finite element method of analysis
is a study of water level and water quality effects of artificial recharge in
the Coachella Valley, California [14]. This area is characterized by a large,
unconfined groundwater basin in the desert region of southern California
in the vicinity of Palm Springs. The approach taken was to use an existing
two-dimensional model (developed by G.F. Pinder of Princeton University)
and apply it to the horizontal movement of water in the aquifer. Figure 5.5
shows the area modeled, which is surrounded by nonwater-bearing deposits.
This particular model uses isoparametric quadrilateral elements, which are
also shown in Figure 5.5. Isoparametric elements are simply a parametric
algebraic formulation to transform nonrectangular elements into rectangles
for purposes of the finite-element formulation.

Substantial efforts were required to identify boundary conditions and
basin surface element inputs {e.g., artificial recharge) or outputs (e.g.,
pumpage). Calibration of the model was required (always the case) since
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Figure 5.5 Finite-element layout for Upper Coachella Valley groundwater basin
model [14].
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imperfect knowledge of transmissive and storage parameters was available.
+  This was done using historical data on inputs, outputs, boundary conditions,
and measured water levels. Figure 5.6 shows a comparison of simulated and
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Figure 5.6 Comparison of measured and simulated water levels for Upper Coachet-
la Valley groundwater basin model [14].
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measured water levels at three points in the basin after calibration was
completed.

UNIFIED DOMAIN METHODS

Hromadka and Guymon [15] and Hromadka et al. [16] have shown that an
infinity of domain methods may be accommodated by a single mass lumping
matrix system. This method, which is called nodal domain integration, stems
from the same concept as the Galerkin weighted residual method. A Gal-
erkin finite-element formulation is obtained by defining an element shape
and trial function and integrating over the finite element domain. QOther
mass lumping schemes can be devised by redefining the integration domain
and the density of the state variable approximation. For example, assuming
a triangular element linear trial function and integrating over a subdomain,
£}, defined geometrically as one third of a finite-element area drawn to
include one vertex as shown in Figure 5.7, an integrated finite-difference
scheme is obtained. Depending on the domatn of definition or the assumed
trial function, an infinity of mass lumping numerical analogs may be ob-
tained.

Similar to the finite element method, a general element matrix equa-
tion may be defined

$e {0k + P i) = {F) (30)

where for a linear trial function, triangular finite element § is defined by
Equation (26) and
1 1
(67)cA® n
pPr=———I1 1 1 31
3+ 2| U

Figure 5.7 Subdomain {}; as the union of all
nodal domains associated with node j.
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where, as before, e represents a particular interior finite element, A¢ is the
clement area, and (8%)¢ is the element term defined by Equation 6. For (n
= 2), the.usual Galerkin finite-element formulation is obtained. For (n =
22/7} (approximately ), a subdomain integration formulation is obtained.
For (m — =), an integrated finite difference scheme results.

Thus a single computer code can be developed that encompasses all
domain numerical analogs. Through the specification of a single parameter,
M, one can choose a numerical scheme that best fits the type of problem
being considered. For instance, were the state variable, ¢, may be changing
slowly in space, specification of (n = 2) may be best. Where sharp wetting
fronts occur in the solution domain, the specification of a large v (say 1,000)
may be more appropriate. There is no reason why v may not be a function
of space and time, permitting one the luxury of having the “‘best” numerical
analog approximation in various subdomains of the solution region or where
conditions may change with time. Time domain solutions are similar to those
used in finite-element solutions (i.e., Equation (29) ).

Both the finite element section and this one assumed linear problems;
however, the methods presented are also applicable to nonlinear parameters
although they are usually unnecessary because of the damped nature of
porous media flow. The simplest approach, which is often quite satisfactory,
is to hold nonlinear parameters constant for a small duration of time. At
the end of this time period, nonlinear parameters can be recomputed on
the basis of the last estirnate of the state variable. Matrices can be refor-
mulated and the solution allowed to proceed in time.

An example of the nodal domain integration method applied to an
artificial recharge problem is presented in Figure 5.8. The solution domain
consists of a two-dimensional vertical slice of soil containing several semi-
pervious clay lenses. Figure 5.8 shows the solution domain divided into
triangular elements (approximately 10 ft high by 30 ft wide). Ponded water
in an artificial recharge basin tends to move horizontally in pervious layers
rather than to percolate vertically to the underlying groundwater aquifer.
Water is ponded to a 20-ft depth for 30 days. This example demonstrates
the need for good geotechnical data as well as a mathematical model sim-
ulation to verify the assumed hydraulic behavior of artificial recharge basins.
The model includes both saturated and unsaturated flow phenomena. The
time domain solution is by the fully implicit technique to accommodate
internal free water surface (phreatic) conditions. For this example 1 was set
to 1,000.
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