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SUMMARY

A generalized boundary integral equation method for the solution of the Laplace equation is developed
based on the Cauchy integral theorem for analytical compiex variable functions. Although the approach
is complicated by the utilization of complex variable theory, the resulting model involves direct integration
along straight-line boundary segments (elements) rather than using quadrature formulae that are required
in current real variable boundary element formulations. Previously published boundary integral equation
methods based on the Cauchy integral theorem are shown to be a subset of the generalized model theory
developed in this paper.

INTRODUCTION

Many engineering problems such as potential flow and seepage are governed by the well-known
Laplace equation. One of the techniques used in approximately solving potential flow problems
is the Boundary Integral Equation Method (BIEM). The solutions of the BIEM are generally
based on approximation real variable functions that satisfy the Laplace equation. Free space
Gréen’s function and Green’s theorem are widely used to determine a statement of the
governing partial differential equation. Butterfield and Tomlin' and Butterfield? used a free
space Green's function to study potential flow problems in anisotropic continuum,
homogeneous and inhomogeneous bodies, respectively. Walker® applied Green’s function in
analysing the fluid-structure interaction problems. Groenenbroom® used the Green’s function
and the Kirchhoff method to study the steady and unsteady potential flow of a compressible
liquid inside a fixed volume.

An alternative to the Green's function solution is the fundamental solution approach. This
technique chooses a real variable function that satisfies the domain condition of the problem,
but does not necessarily satisfy the boundary conditions. This fundamental solution is used
with Green’s second identity to obtain a general method for solving potential flow problems.
This approach was used by Brebbia and Dominguez,” Brebbia,® Brebbia and Nakaguma,”
Brebbia and Wrobel,® Bratanow er al.,” Brebbia and Walker'® and Tanaka and Tanaka!® and
Lennon et al.'* Recently, Sohngen and Bischoff'* applied Green’s third equation 1o the real
potential functions (IJ and In (r)), and by using the Cauchy-Riemann differential equations
for the orthogonal functions, In (r) and angle B, an integral equation of the first kind for the
potential function U was obtained. An application of a BIEM to a field flow problem is given
in Lennon et al.'?

A BIEM model, based on the Cauchy integral theorem using a linear trial function between
boundary nodal points, was developed by Hunt and Isaacs,' to study steady-state potential
flow problems. Hromadka and Guymon'® extended this model to accommodate moving
boundary problems.
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In this paper, a generalization of the real variable BIEM modelling approach to the complex
variable system is made, The BIEM is based on the Cauchy integral theorem, but in this paper
the trial function approximation is extended to an arbitrary polynomial order. Additionally,
flux-type boundary conditions are accommodated in the model. Integration formulae are
derived which simplify the development of a complex variable BIEM model.

BIEM APPROXIMATION

A complex variable analytic function w{z} is composed of two real variable two-dimensional
functions:

w(z)=¢x y)+iglxy), zel (1)

where z =x +iy; i = v ~1; ¢{x, ¥) is a potentiai function; and l!f(:f, y) is a stream function. In
equation (1), w(z} is only defined in a simply-connected domain () wherein w(z) is aua]ytic:.16
The real variable functions composing w(z) are related by the Cauchy-Riemann equations
in {Q:

b _ow 9_

== == )
ox dy ay ax

Consequently, each function is harmonic and satisfies the Laplace equation

2 2
Pe, 0%

ax2 ay 0; ZEQy §=¢,d’ (3)

For an analytic function w(z) defined in domain {) and on boundary f‘ (Figure 1), Cauchy’s
integral theorem equates the value of w(z,) to a boundary integral on I' with

2mrias (20) = i "’z(’; )chz @)

where 2z, is interior of ﬁ, and the line integral integration is in the positive sense (Figure 2).
From equation (4}, a BIEM can be developed which is analogous to current real variable
BIEM models. Similar to the real variable BIEM models, the problem domain {} and boundary
[isredefinedasa global domain () and boundary T', as shown in Figure 3. The global boundary
I is then subdivided into straight-line segments by boundary nodal points,

In the complex variable model, each boundary segment can contain one or more interior
nodal points. Consequently, a different approximation function can be arbitrarily described
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Figure 1. Problem domain {} with boundary contour r
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Figure 2. Domain {} with interior point z,. Positive sense direction on boundary {* is shown by arrowhead
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Figure 3. Global domain ) with global boundary I subdivided into boundary elements I,

on each boundary segment in a fashion similar to using various one-dimensional finite elements
in a finite element domain numerical solution.'” Because each boundary segment approxima-
tion function may be independent from neighbouring boundary segment approximation func-
tions, except for continuity at shared nodal points, the boundary segments will be called
Complex Variable Boundary Elements (CVBE) to differentiate the method from the real
variable Boundary Element (BEM) procedures.”'°

For a point z, interior of (), the Cauchy integral can be rewritten in terms of m-CVBE by

m d
2miwi{zo)= Y J. wlz)dz {5)
j=1dr; Z—2Zo
where [; is a CVBE in a m-element model. On each I';, n-nodal points (z,, z2, ..., z,) are

located such as shown in Figure 4. By defining a linear local co-ordinate system (Figure 5),
the following relationships can be used to calculate the CVBE I'; contribution to the line
integral of equation (5):

Z{s)y=z1+(zn—2z1)s
dz=(z,—z1)ds (zel} Oss=1 (6)
w(z)=wlz(s)

In the following, w(s) will be used as notation for the w(z(s)) function on each I';.
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Figure 4. Boundary element [; with associated nodal points at locations z,-z,

The Cauchy boundary integral can be written as the sum of m-CVBE contributions
m el n—2z1) ds
2ario(zo)= ¥ (I 9.9}(2_11.)__) 7
i1 \oo zZ(s)—zg f

where the subscript { ); notation indicates values from CVBE I';. Equation (7) can be simplified
to

, _nr wis)ds
2mie(zg) —;Z,l (L=u - )f, Oss=1 (8)
where
_ Z1— 2o
E (Zn_zl)j (9)
and
wls)=q(s}+igls), O=s5=1 (10)

Equation (8) can now be rewritten as a sum of the complex variable definite integrals

(J“ w(s)ds) =(I‘ qb(s)ds) H,(J" t!/(s)ds)
s=0 §+E i s=0 S+HE j s=0 S+£ i
The assumed approximation functions for ¢ (s) and ¥(s} are substituted into equation (11),
where

(11)

“””Eki. Ne(s)dy,  Oss=1 (12)
:/x(s)sk)lek(sm, 0=s<1 (13)

s G- -
z 25 23

Figure 5. Boundary element local co-ordinate system definition
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The shape functions N (s) are analogous to the one- dunens:onal interpolation functions used
in finite element methods;'” and (¢, ¢ ) indicate values of ¢ and ¢ at nodal point & of CVBE
T

Combining equations (8), (12) and (13) gives the BIEM approximation statement

rrinteg= £ (|| Nedy | § ([ Theds »

BIEM BOUNDARY NODE APPROXIMATION

Analogous to real variable BIEM modelling, either values of ¢ or « are known along each
CVBE. Therefore, the unknown real function value needs to be determined for each nodal
point defined on boundary I. An equation can be developed which defines an unknown nodal
value as a function of all remaining unknown nodal values by calculating the boundary integral
in equation (14) as interior point z, approaches each boundary node z; in turn. This limit
process results in a Cauchy principal value of the integral.

Two techniques of determining the principal value will be presented. One approach'® is to
redefine the global boundary at node { with a circle I, of epsilon radius as shown in Figure
6, where

Ioiz—z,=ge®, 0<¢{<(2nw—-8) (15)

Fe‘\

iT‘

-y /
/////////

Figure 6. Definition of contour integration for Cauchy principal value determination

Therefore the Cauchy principle value is determined by

2 hm w(z; )—hmj wlz)dz (16)
e>0Jpyr, 22y

where I" is the global boundary I" with that portion interior of a complete circle centred at
point z; (with radius ¢) deleted. Expanding equation (16},

limj w(z)dz=J’ w(z)dz 17
=0 )y z—z; r z—2z;
and from equation (15)
limI w2)dz_ e - (18)
e>0lp, Z—Z



30 T. V. HROMADKA Il AND G. L. GUYMON

where angle ¢ is as shown in Figure 6. From the above, the BIEM approximation statement
for boundary points z; € " is given by the principal values

fiw (z;) = ,; (J:O E—%—‘%EE)JH J}; (ILO %‘ﬁ)f (19)

where for element interior nodal points, § = .

A second method to determine the Cauchy principal value will be presented by means of
an example (the results which will be used in a later section). Consider a linear trial function
between successive nodes (z1, z3) and (z2, z3). Then for z,€ ) and zo#T" (Figure 7),

’zw({)d{+r’w({)d£_ » J‘z‘“w(s’)df 20)

2 $7Z0  nmEizsdy {—zo

2miw(zg) = J

zy C_ZD

Figure 7. Cauchy principal value parameter definitions

Define

I=2wiw(20)—J 2w_(s'_)ﬁ_j Cw(g) de

{—z0 ) $—20 2D

For the linear trial functions assumptions,

I= 2’7"“’(z°)'[wz—w1+w1(22—z°) In (Zz-zo) _wz(ZI_ZO) In (ZZ—ZU)]
270 Zi— 2o Z2-124 71~

- [w3_w2+ wz(z;-—zo) In (23_20) _W3(zz_ ZO) In (23_20)] (22)
23— 2Zn 23— Zp 23— 23 Za— Iy

In the limit as z, approaches z;, (zo€{}, z;€1),

lim I-‘—-21ﬂ'w(zz)—[(w3—w1)+w2 In (z“_“)] (23)

Zp*Ia Z1— 23
Simplifying,

Z1™22

lim [ =2miw,—(ws—w1)+w:n —i(2m — 0w, (24)

o132

—za
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Hence,
m,-m3+cu2[ln fimza +i0]== ) J’M (25)
3—22 zi#z1,23 Jz; {_ZO_

CVBE INTEGRATION CONTRIBUTIONS

On each CVBE I}, an approximation function is defined such that for n-nodal points on T;
w(s)= ¥ Ni(s)w, Oss5<x1 (26)
k=1

where @i = ¢ +ith. A convenient family of interpolation functions is the usual set of poly-
nomials where

. 1, Z=Zy
N"(S)—[o, 2=z, Jj#k @7)
Then for a {n + 1)-nodal point element,
Ns)=ag+as+...+a,s", O=ss=1 (28)

For element I'; with z,&I; the integration contribution to the boundary integral may be
calculated from the relations

I jz—-ln (s+£)
sds
js+g—s~Zln(s+z)
ds {29)
5
+
J' +Z' ~Es+27%In (s +£)
s"ds o gn2d (ﬂﬂ)‘s"“‘)
jHZ (T L)+ ernere)
As an example, a cubic polynomial approximation function on CVBE T is defined by
Ni(s)=(ap+ais +azs> +ass) (30)

Then for z, &I, expansion by partial fractions gives

Nk s)wk

s+ —[(CIB)kL s2d5+(a2—-a3z’)k‘[:sds

1 1 dS .
+(a1—a£‘+a£2)kL ds + (a0~ af + axl’* ~ a-£7), A S+€]wk (31)

For zoe T, the Cauchy principal value is used as z, approaches the appropriate z, T; (see
the example of equations (20)-(25)).
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FLUX-TYPE BOUNDARY CONDITIONS ON I'

Normal flux boundary conditions of the potential function ¢ can be specified on an element
T'; by using the Cauchy~Riemann relations with respect to tangential and normal co-ordinates
along the straight-line segment CVBE T,

9o _ ¢
ds  on (32)
i __
an_ as (33)

Assuming that at least one value of the stream function ¢ is specified on I" as a reference,
the remaining nodal ¢ values can be equated by means of equation (33). The resulting linear
approximation equation is simply an implicit finite difference relation between neighbouring
nodal ¢-values, which is solved as part of the global matrix system.

MODEL SOLUTION

A global matrix system is developed composed of N equations for N unknowns. Each equation
is either generated by a Cauchy integral approximation statement of equation (19) or by
flux-type boundary conditions determined by eguation (33). For a Dirichlet problem, or
problems where the stream function is specified rather than using Neumann boundary condi-
tions, a fully populated N x N matrix is generated for a N -variable system.

Solution of the global matrix system determines values for the unknown nodal point real
variable functions on I, Interior values of the ¢ and # functions are evaluated by the Cauchy
boundary integral for zo € (.

A comparison of the CVBE method to the real variable BEM®'? indicates that the CVBE
method eliminates the need to numerically integrate boundary element contributions as is
required in the BEM. Additionally, the CVBE method allows variable element trial function
specifications on I' without significant computer programming difficulty. However, the CVBE
method does require some additional computational effort due to complex variable arithmetic.

EXAMPLE APPLICATIONS

Three example problems are presented to illustrate the use of CVBE methods.

Linear trial function on T

Hunt and Isaacs'* developed a BIEM model based on the Cauchy integral theorem, but
assumed that the complex function w(z) was linear between boundary nodal points. The
appropriate CVBE trial function is

w(2)=w.-(ﬁﬂ)+w;+l( z L ) (34)

Zivt ™I Zivy— I

An extension of the model was then used by Hromadka and Guymon®® to analyse moving
boundary problems in a freezing/thawing two-dimensional soil problem.
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The Hunt and Isaac’s model is a particular subset of the CVBE method when ¢(s) and
r(s) is specified as linear on each element, I';. Thus,

Ni(s)= lws}
Nals)= s O=s=x1 (35)
and '
w(S)=NICU1+N20)2 ) ‘ (36)
From equations (19) and (31), for zo# I - '
1 . 1 1 . . 1
(N1w1+N2w2) ds J‘ ds j (S +€) ds J‘ ds
= - — (w3 — 37
J’sao st ary S+e+(¢02 w;) R {2 wl)ﬁ’o st (37)

where £ =(z,—z0)/(z2—2z1) and (1+&%Y/ € =(z2~2z0)/(z1— zo). Solving equation (37) gives

J‘l w(s) dSsz[l +(Zo—21) In (22—20)] _w1[1+(20‘“22) In (Zz—lo)] (38)
s=0 S+E (z2=z1)  \z1— 2o (z2—z1) \z1—zp

which determines the element contribution with w(s) assumed linear on each I';. In the case
of zoeT;, the Cauchy principal value, equation (25), is used to determine the appropriate
element contributions.

Several appllcatlons of the linear model are given in Hunt and Isaacs'* and Hromadka and
Guymon." In these model applications, good results were obtained in the prediction of state
variable values along the problem boundary, T, and in the interior of the domain, {). Hromadka
and Guymon'’ used a linear trial function model to calculate heat flux values along the freezing
front in a two-dimensional freezing soil problem. Based on estimates of net heat efflux, the
changes in the freezing front co-ordinates are calculated assuming isothermal phase change
of the available soil moisture. Re-evaluation of the Cauchy integral determines new values
of heat efflux along the freezing front which are in turn used to relocate the moving boundary.
Comparison of computed results to a finite element domain solution indicated that comparable
modelling accuracy is achieved at a significant savings in computational effort.

Circular contour integration

Analogous to constant BEM elements, a simple approximation for w(z) is to assume nodal
values w(z;) are constant from mid-element to mid-element (Figure 8). This approximation
results in the CVBE contributions of

: m 1 ds - V2 ds '
2iw(zq) = Z} (“’fj;m”zs+z}_1+w"_1-40 s+,€}) 9)

=t

Figure 8. Constant boundary element approximation on global boundary I’
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where zoe (}; &5 = (z;1— 20)/ (2 = 2;-1); £ = (2; — 20}/ (zj+1— 2;). In equation (39), the global
contour [ is assumed subdivided by m nodal points. From equation (39), nodal value w(z;)
is attributed the weighting

1 1/2
ds J' ds ) [1/2(Z;‘+1+21‘)"20]

; + =w;ln 40
oAl vl e lime 0
Equation (40) coupled with a Cauchy princtpal value term develops a general BIEM model,

which has no variation of w(z) in a neighbourhood of boundary nodal points.
This simple model can be used to demonstrate the convergence of the aigorithm as the
number of nodal points increases. The problem to be examined is the Cauchy integral along

a circular contour with centre point zo. In this problem, the number of nodes () is assumed
to divide I into m equal length boundary elements. From equation (40) and Figure 9,

1/2(z + )~ Zo] [Rz e""z]
o e @)

where R, =R ,;and 68 =8, 6,.

Figure 9. Definition of Cauchy integral on a circular contour
Therefore from equations (39) and (41),

2miw(zo) = lim Y iw; 56 (42)
m=-+ao =1

!

Thus from the above, the Gauss mean value theorem results by

™

2
w(zo).=§"1“L=0w(9) de (43)

Although computer models based on the constant boundary element approach are simpler
to formulate than higher order trial function approximations, the same magnitude of the
matrix system results for a N nodal point problem as would occur when using a higher order
trial function.

Higher order polynomial approximations

The complex variable analytic function w(z) solves the governing Laplace equation in (
and the various boundary conditions on I. The CVBE approach approximates w(z) by the
integration of complex variable approximation functions along the straight-line segments used
to discretize the global boundary, T

For w(z) to be analytic in Q and on I, @ (z} must not have poles or essential singularities
in the problem domain. An impoertant family of such problem solutions is the family of complex
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polynomials centred at the origin, (0+07), where the problem domain is linearly translated
about the origin.

Consider a nth order complex variable polynomial solution to a Laplace problem. Then for
the CVBE method to provide the exact solution, an ath order polynomial approximator &, (s}
must be specified on each straight line I'; by

~ duls)= £ Moo +1 % Nalshi (44)

k=

where on I';
z(s)=z,+(z,~2z1)s, O=ss=1
@,(2(s))=Co+Ciz(s)+...+C,lz(9)]", Oss=1

and the N, (s) are ath order polynomials in 5. Then from the Cauchy integral theorem, each
value z,< () can be expressed as the sum of CVBE contributions

(45)

1 A —_
zwiwn(zo) =Z I L) (S) ds z‘,' - (21 ZO) (46)
s i

T, dsm0 S+E; ’ Zn—2Z1
But by assumption, &.(s) = w.(2) on each I, Therefore equation (46) can be rewritten as a
strict equality by
w,,(zg)=Co+Clzo+...+C,.zg 47

The polynomial model of equation (47) is simple to apply when using the polar co-ordinate
relations

z0=Roe™; Ry=0,0<8,<2 (48)
20=R5e™ n=0 (49)
e""% = cos (n@,) +i sin (nfo) (50)

In equation (47), the problem is to determine 2(xn + 1) unknown real value parameters for an
order n complex polynomial by noting that

W (2)=(ao+iBo) +{ar+iB1)z +.. ,-I-‘(a,. +ia)z" 51

where the (a; 8;) are unknown real values to be determined based on the specified nodal
boundary conditions. It should be noted that the CVBE approach simplifies to the nth order
complex polynomial model only when (1) nth-order polynomial approximators are used on
each straight-line complex boundary element; and (2) the nth order complex polynomial is
the actual solution to the problem being studied. A major advantage offered by a complex
polynomial model is the significant reduction in computational effort involved in the generation
of global system matrices.

Applications of a complex variable polynomial model in the solution of steady-state and
time-stepped steady-state field problems are contained in Hromadka and Guymon.'® In that
paper, the complex polynomial model was shown to produce more accurate results than a
linear trial function model, but at a considerable saving in computational effort. For time-stepped
problems, such as may be applied to slow moving interface problems, the complex polynomial
model was found to reduce computational effort by over one-third of that required for the
linear trial function model. However, the polynomial was found to be limited in the number
of nodal points which could be used along the problem boundary without requiring higher
precision computer arithmetic. capability.
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CONCLUSIONS

A generalization of real variable calculus-based BIEM and BEM techniques to the complex
variable system is made, The new modelling approach allows for the combination of dissimilar
trial functions to be defined along the problem boundary and eliminates the need for boundary
element quadrature computations due to the direct integration of the complex variable trial
functions. Using the derived integration formulae, the CVBE method is straightforward to
prepare efficient computer programs. In this paper, direct comparisons are made to the linear
trial function complex variable BIEM of Hunt and Isaacs,' the constant element BEM model
of Brebbia,® and the complex variable polynomial approximation method.’®

Applications have been made to problems where it is assumed Laplace’s equation applies.
The solution region must be homogeneous and isotropic. Theoretically, heterogeneous or
anisotropic domains can be suitably transformed to homogeneous isotropic regions. Laplace’s
equation may be assumed from dynamic parabolic processes provided the temporal term may
be assumed negligible. In this case approximate time-stepped solutions may be suitable. A
large number of porous media fluid flow and heat flow problems may be approximated by
these assumptions.
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