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ABSTRACT

A boundary integral equation formulation based
on the complex Cauchy integral theorem is applied
to two-dimensional soil-water phase change problems
encountered in algid soils. The model assumes that
potential theory applies in the estimation of heat flux
along a freezing front of differential thickness and
that quasi-steady-state temperatures occui along the
problem domain boundary. Application of the
boundary integral formulation to two-dimensional
problems results in predicted locations of the freezing
front which are highly accurate, Although the pro-
posed formulation is based on the Cauchy integral
theorem, similar models may be developed based on
other forms of integration equation methods.

INTRODUCTION

The purpose of this paper is to apply well known
potential theory to the solution of soil-water freezing
or thawing problems wherein the temperature is a
harmonic function. For problems where phase
change latent heat effects dominate the heat trans-
port process, the heat balance equations may be ap-
proximated by the Laplace equations coupled with
the boundary conditions modified to include the
effects of phase change. To do this, the dynamic
component of the classical heat transport equation
is assumed negligible compared to the latent heat
term when f{reezing or thawing a soil-region. More-
over, it is necessary to assume an isotophic, homo-

geneous solution domain. However, by means of a
suitable coordinate transformation for relatively
geometrically simple regions, anisotropic or even
heterogeneous domains may be transformed into
a region in which potential theory may apply. As
a result, boundary integral equation techniques may
be applied which, for the test problems considered,
significantly reduce computer storage and execution
times when compared to classical domain methods.
Generally, in freezing problems we are interested
primarily in the location of the freezing front and in
the estimation of heat flux values normal to the
freezing front. Boundary integral equation methods
(BIEM.) focus on these two types of problems
directly. Additionally, the BIEM_based models
can significantly reduce the computational effort
involved in producing mesh generations and manip-
ulations, besides allowing very small mesh reloca-
tion except along a moving fecezing-front boundary.
In this paper, we will develop a model based on a
sophistication of a boundary integral equation
method utilizing Cauchy’s integral theorem for
analytic functions as presented by Hunt and Isaacs
(1981), and will show results that support its use
in geothermal problems involving freezing or thawing
that are associated with geotechnical problems typical
to areas where there is significant penetration of the
freezing isotherm.

The application of potential theory is illustrated
by considering a heat flow problem defined on a
connected domain 2 with an exterior boundary
described by a simple closed contour I'. The heat
flux across a surface located in the interior of £2 is
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given by
- -
Q=-KV¢ (1)
where ¢ is the temperature potential, and K is the
thermal conductivity which is assumed isotropic
and constant in £2.

For two-dimensional problems the heat flux may
be represented by complex variable notation as

2 a
0 =0y +iQy - k2 g2

ax ay
where { =+/—1.
For an arbitrary simple closed contour C, interior of
£

2
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where Qp and @; are outward normal and tangential
components of the heat flux on C; steady state con-
ditions are assumed in £ with no therma! sources
or sinks. Equation (3} defines ¢ as harmonic, satisfy-
ing the Laplace equation in €. The harmonic con-
jugate Y exists in £ and is related to ¢ by the
Cauchy -Riemann equations (Dettman, 1969). The
complex temperature £(z) is defined by

E(2) = ¢(xp) + iY(xp) 4)

where W(x,») = ko represents constant heat flux
lines and @(x,y) = ko represents an isothermal poten-
tial where ¢ is constant along each potential.

Classes of problems which can be described in
terms of a complex function such as (4) include
ideal fluid flow, heat flow, electrostatics and porous
media flow in isotropic, homogeneous domains. For
approximate sclutions, domain numerical approx-
imations are generally employed such as the finite
element, finite difference, or nodal domain integra-
tion methods. For homogeneous problems, bound-
ary integral equation methods are reported to be
superior to the domain numerical methods (Liggett,
1977; Liggett and Liu, 1977; Lennon et al., 1980).

In this paper, a boundary integral method is
used to solve for the temperature distribution on
the problem boundary I where two types of bound-
ary condition are approximated simultaneously on
ry+r,=r:

Dx.y) = gx.)),
Yi(x,y) = volxp),

el
(xy)ely

(%)

and isothermal phase change is defined on 'y I, such
that

ds
L'd_f = Ean (6)

i

where the subscript { is a summation index, and
where s and On; are normal spatial and heat flux
terms, respectively.

Equation 6 indicates that the rate of boundary
movement {freezing front) due to an isothermal phase
change is directly related to the net heat efflux on
the boundary of I';. Additionally, the sum of normal
heat flux terms along T’y is defined in terms of
algebraic sign according to the freezing/thawing
direction. In egqn. (6), the volumetric latent heat
of fusion for soil-water is used for £ where the class
of problems to be studied is the prediction of the
freezing-front location within a homogeneous iso-
tropic (or regional homogenecus isotropic) freezing/
thawing soil where soil-water transport is assumed
negligible. From eqn. (6}, the freezing front contour
[y is redefined in (x,y) coordinates after each time
advancement. An approach used to calculate new
I3 (x,¥) coordinates is to displace the nodal points
(located at the midpoint of each boundary element)
normal to the heat flux direction such that the total
I'; movement balances the total heat efflux integrated
with respect to time along I's. The normal heat flux
values are calculated along I'; by the Cauchy--
Riemann relations for analytic {complex variable)
functions. For the examples considered, results
indicate that the nodal x coordinates vary consider-
ably less than the y coordinates and that carefully
defined subregions of two-dimensional problems may
be compared to cne-dimensional model results to
check modeling accuracy,

The approach used to develop a two-dimensional
soil-water freezing/thawing model is to approximate
a two-dimensional dynamic temperature field with
a time-stepped steady state temperature distribution
in £2 by means of a complex boundary integral for-
mulation. In soil-water phase change problems where
latent heat effects dominate the transient heat evolu-
tion, a quasi steady-state type problem can be for-
mulated for many real world situations where a
steady state head flux estimation is a good approx-
imation for the time-averaged dynamic heat flux
values,

Such an approach includes the advantage of a
precisely defined freezing front location in a two-



dimensional domain £2 without the use of the finite
element deforminggrid method (such as used in
Lynch and O°Neill, 1981) or a multi-dimensional
finite element model. Consequently, the proposed
model may be ideal for many homogeneous soil
freezing/thawing problems in geotechnical engineer-
ing where computer capability is limited, such as
can be obtained with present day microcomputers.

FORMULATION

A discussion of the current trends in cold-regions
thermal numerical models is contained in Guymon
et al, (1980) and a review of current boundary in-
tegral methodologies is contained in Hunt and lsaacs
(1981). The general trend in algidsoil numerical
models is to use domain methods to approximate
the dynamic heat flow egquation and to include a
soil-water phase change model incorporating an iso-
thermal or apparent heat capacity approximation.
These domain numerical models allow the ease of
solving for problems which have a spectrum of dis-
similar materials and anisotropy. However for prob-
lems which are homogeneous, s BLEM. formula-
tion may be used to estimate the heat flux values
within the problem, resulting in a numerical model
which, for the test problems considered, is a frac-
tion of the size of the domain model. However, be-
cause the B1.EM. model develops a fully populated
Nth order matrix for an &V nodal point discretization,
the global model size can quickly exceed a domain
model’s requirements when a fine mesh is used on
the problem boundary.

THEORY

Figure 1 shows an assumed problem to be studied
which consists of a roadway embankment. A con-
stant temperature is specified for ¢y and ¢ with
the sides of the roadway embankment problem being
specified with values of ¥ =y and Wg. For a
boundary integral formulation, Neumann boundary
conditions can be used on the left and right sides
rather than determining ¥, and ¥R or an equivalent
¢p, and ¢g. Any of the usual boundary integral ap-
proaches can be used for this problem; a complex
formulation is used in this study due to the ease in
contour Integration which results from the well

117

]

30m

Fig. 1. Roadway embankment problem showing B.LEM.
nodal placement and freezing-front definition.

known Cauchy’s integral theorem.

Assuming the freezing-front location to be defined
at some time f4, the dynamic heat evolution problem
is approximated by solving the Laplace relations (Fig.
1) to estimate the mean heat flux values along the
freezing-front location during a large timestep, Ar.
For example, in the problems studied, time steps of
one week are used with good resulis. From the
estimated heat flux values, the change in the freezing
front is calculated from eqn. (6). That is, a method
of calculating the change in the freezing-front coor-
dinates is to calculate the change in the nodal point
coordinates in the direction of net normal heat flux.
For nodal points located at the midpoint of bound-
ary elements (Brebbia, 1978), the determination of
new coordinates at the freezing front may be es-
timated by a simple balance between the volume
of soil frozen and the time-integrated heat evolved.
Due to the model’s basic assumption of phase change
effects dominating the entire heat transport process,
the freezing-front evolution is relatively slow; the
simple freezing-front evolution model described
above was found to be adequate for the problems
tested. The new freezing front location at time
to, + At is then used to obtain a better estimate of
average heat evolution balance using heat flux ap-
proximations for time (¢o + At/2).

To solve the Laplace equations, £(z) is solved on
the boundary of each subproblem to determine
simultaneous heat flux values at each nodal point
along the freezing front. From Cauchy’s theorem,

1 £(z) dz
E(zo) = 2"? f

i r (Z _z())

(7)
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where z (z =x + iy} e I', and z, is in the interior of
2. Integration is performed in the usual counter-
clockwise fashion on boundary I,

by definition of the contour integral

(=) dz f &(z) dz
C-2) 3p (220 ®)
221G s
where 1541 is the contour between nodes
zj and z;+1 .ForzjonT,
&(z) dz
He)= — f ©

(z - zj)

where P is the Cauchy Principal Value, and 8 is the
interior angle between line segments I ;41 (Fig. 2).
On the boundary I' of each subproblem, either
(zp) or ¢lz;) is defined at each boundary nodal
point z; € I'. Consequently, from eqn. (9), ¥ equa-
tions result for the N unknown variables for an
N-nodal point discretization of I'. The integrations
on [" are approximated by means of combining eqns.
(8) and (9).

The numerical integrations from solving eqns.
(8) and (9) are arrived at by assuming £(z) to be
piecewise linear between nodal points, that is

» Z-z Ziyl - 2

o= (g (22 )y ao
Zi+l — Zf Zi+1 —Z

where £(2) is the approximation of &(z) on I3 j4y;

and & is a nodal point value at node z;.

The numerjcal integrations result in a complex
logarithm formulation which is given in Hunt and
Isaacs (1981) and is summarized by the following:

vl Hz)
P f G 72]_)(1

Zj1

z=%s1 &1

Zjx1 = %

Oy

+£1n

zj 1tz
for z; ¢ I'. For boundary nodal points z, # j +1

£(z) dz

0 % Zj1 —20)]
1
f( T2g) [l +(Z,~+1 z;) n(z,- Zg
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Zg - Z; Ziy ~ 2
R [ iy I (e
Zivy — Zf Zy = 2o (12)
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Fig. 2, Geometric definition of complex contour angle, 6.

The contour integrations tesult in the equation
system

£(z) dz
E_H} - g] 1+ E
kf j+1 Iy (zk ;)
&= (13)
Z-1-2 .
Ip | =——-| +i0
Zj+l —Ef
The full system is written in matrix form
K(9.9)=0 4

where K is a fully populated matrix of known coef-
ficients from eqn. (13) and (¢, Y} is the array of
(¢j. ;) values of the complex temperature £;. Heat
flux values can be estimated by determining a &,
interior of (2 and calculating the normal temper-
ature gradient values using each ¢o(¢y = 0°C) value
along the freezing front, [y, or directly from the
Cauchy —Riemann equations.

Since the problem domain is assumed homo-
geneous and isotropic, parameter estimations are
not required on a control volume basis because the
soil mixture is assumed either entirely [rozen (with
some predetermined unfrozen water content typical
of these problem freezing temperatures) or thawed on
either size of the freezing front, I's. In comparison
to a finite-element fixed-grid model, thermal param-
eters are constantly changing as the control volume
iee content values change with time, necessarily caus-
ing frequent domain-method global matrix regenera-
tions due to the linearized approximations of the
governing nonlinear heat flow equation.

For an anisotropic homogeneous problem, the
above methodology can be utilized by simply re-
scaling the global problem to accommodate the ratio
of horizontal-do-vertical thermal conductivity values



{Myers, 1971) and solving the modified problem in
the new (%, #) space.

For nonhomogeneous problems, complexities arise
in an effort to simultaneously solve for the unknowns
of & shared on the boundaries of homogeneous
regions. The resulting extra manipulations often over-
shadow the benefits of the proposed geothermal
model, especially when comparing the effort re-
quired for problem data-input preparation between a
domain method formulation and the boundary in-
tegral formulation. Additionally, in the approxima-
tion of heat evolution in a nonhomogeneous problem,
several nodal points are required in the interior of £
along the boundaries of the defined homogeneous
regions, resulting in a significant increase in com-
putational effort due to the fully populated matrix
requirements of a boundary integral formulation.

For computational efficiency and model com-
parison purposes, a B.ILEM. numerical model (Breb-
bia, 1978) was also used for the approximation of
nodal temperatures and heat flux values on the
freezing-front boundary. Both the complex tem-
perature formulation and the ‘“boundary element
methed” were applied io identical nodal place-
ments and definitions for each test problem studied.
Comparison of computational results indicate that
either approach produces similar values of heat flux
on the freezing-front boundary and, therefore, pre-
dict nearly identical freezing-front locations. An ad-
vantage of the complex temperature formulation
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is the relatively straightforward contour integrations
summed along the boundary I'. An advantage of the
boundary element formulation is the direct com-
putation of heat flux values along the freezing-front
nodal points.

APPLICATIONS

The boundary integral equation method (B1.EM))
geothermal model was applied to the roadway em-
bankment problem schematically defined in Fig. 1.
The first problem studied assumed that a constant
—10°C temperature is uniformly imposed along the
top surface of the domain with the rest of the domain
initially set at +0.1°C; that is,

$y = -10°C
¢ =+0.1°C
(or $1) = Linear varation from (¢y ¢p) to '3

For the subproblem V2T, = 0, a frozen thermal
conductivity value of ice {5 used whereas an un-
frozen thermal conductivity of water s used for
subproblem V2T, = 0. The freezing front T3 is
initially assumed at a location of 50 ¢m below the
top ground surface. Figure 3 shows several plots
of predicted freezing-front locations from the geo-
thermal model.

To test the accuracy of the model, three quasi

|
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Fig. 3. Freezing-front locations as estimated by geothermal model (34 nodal-point B.LE.M. model).
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Fig. 4. Sensitivity of B.LE.M. geothermal model to time-step
size.

one-dimensional problems were identified (labeled
A-A, BB, CL) in the two-dimensional problem
domain of Fig. 3, and the one-dimensional analytical
solutions compared to the two-dimensional geo-
thermal model resuits. The geothermal model was
found to give good results {Fig. 4) when compared
to the well known one-dimensional semi-infinite
Stefan problem solution.

To examine the effects of model timestep size,
the geothermal model was tested for variations in
the prediction of the freezing-front location as a
function of the length of the timestep size. The
variation in results are shown in Fig. 4 which in-
dicates that the geothermal model results vary in
accuracy by less than 2% between time-step sizes
of 6 hours and 1 week.

Due to the small computer memory require-
ments for matrix solution and the relatively simple
coding necessary for the BILEM. or boundary
element (BEM) approaches, the freezing-front
locations plotted in Fig. 3 were obtained from a
well known 64 K byte microcomputer capability
(FORTRAN language). Consequently, sophisticated
two-dimensional problems may be analyzed econom-
ically by currently available low-cost “household”
digital computers.

As a second example problem, the effects of a
buried pipeline maintained at subfreezing tem-
peratures were studied. In this problem the freezing-
front model used in the first example problem was
utilized along with a radially defined freezing front
from the buried pipeline (Fig. 5.
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P'ig. §. Buried-pipeline problem showing two fieezing-{ront
definitions and three temperature-domain solutions.

Three subproblem domains were defined in order
to estimate a net efflux of heat along each freezing
front, To verify the model approximations, one-
dimensional problem solutions were compared to
both the horizontal-plane freezing front and the
radia! freezing-front problems. The problem simula-
tion time was for a 6-month duration and required
less than 10 CPU seconds on a Data General Eclipse
mini-computer system (using a model time-step size
of one week). Model accuracy was found to be in
ertror of less than 2% from the one<dimensional
Stefan problem analytical solutions. On a 64K byte
(FORTRAN) microcomputer system, computer se-
quiremenis cost approximately 2 CPU minutes for
the same 6-month simulation. From Fig, 5, it can
be noted that a peat layer is approximated by re-
scaling the global model and neglecting horizontal
heat flux effects and assuming only a vertical freez-
ing-front penetration in the peat (the modeled
results verified this assumption). Heat flux was as-
sumed to be zero on the left and right sides of the
global problem domain. Computer solution of the
steadystate heat flux problems were obtained by
the BIEM. (Brebbia) in order to directly obtain
heat {lux values along the radial freezing front.

CONCLUSIONS

A soil-water freezing geothermal model is devel-
oped which is based on a complex variable boundary
integral equation method using Cauchy’s theorem.



The geothermal model provides good results in the
prediction of soil-water freezing fronts in two-
dimensional problems. Since the latent heat effects
of soil-water phase change are assumed to dominaie
the total heat evolution budget, quasi steadystate
temperature distributions may be used to estimate
total net heat flux values along the soil-water freezing
fronis. The compuier coding requirements are small,
enabling the model to be accommodated on current-
ly available home microcomputers for many two-
dimensional freezing/thawing soil problems.
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