Numerical Heat Transfer, vol. 5, pp. 223-232, 1982

TECHNICAL NQTE

A NOTE ON APPROXIMATION
OF ONE-DIMENSIONAL HEAT TRANSFER
WITH AND WITHOUT PHASE CHANGE

T. V. Hromadka I and G. L. Guymon
Department of Civil Engineering, University of California,
Irvine, California 92717

A numerical model is developed for the one-dimensional heat transfer equation with
and without phase change. The numerical model is based on the nodal dimain integra-
tion method, which can represent the well-known integrated finite-difference method,
the subdomain integration and Galerkin weighted residual methods, and an infinity
of ather finite-element lumped-mass models by the single numerical analog. A variable-
order polynomial trigl function is used 1o opproximate the remperature within each
finite element, Accurgte solutions were obtained for the test problems considered,
and the computer model requirements are small, alfowing the numericgl model to be
accommodated with @ hand-held programmable calculator.

INTRODUCTION

The technique of solving partial differential equations (PDEs) by numerical approx-
imation is becoming increasingly attractive with the greater availability of digital com-
puters such as current mini- and microcomputers. For some specialized problems, numeri-
cal approximation is feasible for even hand-held programmable calculators.

In this paper a numerical model of the well-known one-dimensional parabolic PDE
that mathematically describes heat transfer is developed. The governing PDE is assumed
to be expressed by
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where ¢ is the dependent variable, temperature; x and r are space and time; and K and C
are the thermal conduction and capacitance terms, respectively, both assumed constant
in global domain 2. A sophisticated version of Eq. (1) including isothermal phase change
of soil moisture in a freezing soil is also considered in this paper.

A review of the literature showing the current trends in numerical approximation
of moisture phase change problems, such as the well-known Stefan problem, is contained
in Lynch and O'Neill [1] and will not be repeated here. Usually, either the Galerkin
finite-element method or an integrated finite-difference method is used to numerically
solve the governing PDE. In other papers, soil moisture and heat transport models based
on the control volume or subdomain integration method have been found to produce
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more accurate results than the Galerkin finite-element method (Hromadka and Guymon
[2}, Narasimhan and Witherspoon [3}, Narasimhan et al. [4], Baliga and Patankar [5]).
Hromadka and Guymon [2] examine the various numerical approaches and conclude
that for problems where analytical solutions exist, the approximation error is not mini-
mized by any of these approaches. In fact, they show that to minimize the approxima-
tion error, the method of numerical solution must change as the simulation progresses
in modeled time.

Using the nodal domain integration method, Hromadka and Guymon [2] develop
a finite-element matrix system that can represent the Galerkin, subdomain integration,
and integrated finite-difference methods by the specification of a single mass weighting
factor. For a linear trial function estimate within each finite element, the resulting
element matrix systems for each of the above numerical approaches are identical except
for a variation in mass weighting of the element capacitance matrix. Consequently, a
unifying numerical analog is easily developed and is expressed by

A%(n) = S°p° + PE(n}° 2)

where A® is the finite-element mairix system for the approximation of Eq. (1) in local
element 02°; ¢° and ¢° are the element nodal state variable values and time derivative of
nodal state variable values; and 8% and P®(n) are element matrices defined by
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where 1€ is the length of element £° and 7 is a mass weighting factor. From Eq. (2), the
Galerkin, subdomain integration, and integrated finite-difference methods are given by
n = {2, 3, =), respectively.

Thus it is seen that from Eq. (2) an infinite of mass weighting models exist. How-
ever, no single mass weighting model (including Galerkin, finite difference, and sub-
domain integration) provides the best numerical approximation. The optimum definition
of i that minimizes the approximation error is a function of time, such that
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In this paper a modification of the unifying nodal domain integration model of Eq. (2)
is used to numerically approximate the two-phase Stefan problem as defined for a
freezing soil. The definition of the model mass weighting factor is given by the integration
of a variable-order polynomial trial function within each finite element. Because the
proposed trial function family can approximate both smooth and steep function surfaces,
the number of necessary finite elements is reduced, and this significant]y reduces com-
puter memory requirements.
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GOVERNING EQUATIONS

A two-phase Stefan moving-boundary problem in a freezing soil is defined by
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where €, and K| are the volumetric heat capacity and thermal conductivity of frozen
soil and C, and K, are the appropriate unfrozen thermal parameters. The problem
domain of definition is divided into the regions R, and R, by a moving boundary S,
defined by
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where L is the volumetric latent heat of fusion of the soil water available for freezing.

The one-dimensional freezing soil problem is further defined by the boundary
conditions of a freezing and subfreezing temperature imposed on respective ends of the
problem domain, with the initial condition of the soil-water mixture being specified at
a thawed temperature.

Without phase change, the governing heat equations can be reduced to the weli-
known normalized problem with conditions

Er=0)=1 0<x<!
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where £ is a normalized variable substitution for the dependent variable temperature,
and the problem domain of definition is redefined as {x:0<x < 1}.

Both heat transfer problems described above will be modeled by the numerical
methods presented in the following sections. For the normalized heat transfer problem
with conditions of Eq. (8), symmetry is used to redefine the problem with a zero-flux
(Neumann) boundary condition at the midpoint of the domain, and then one finite
element is used to approximate the temperature profiles as the solution progresses in
time. For the two-phase Stefan problem, specified boundary temperatures (Dirichlet)
at the endpoints of the problem and at the freezing front are used as follows:

T=Tp x=0
T=TU X = TF<0°C<TU (9)
T=Ty t=0

where the freezing point temperature is 0°C. For the phase change problem, two finite
elements are used with nodal points defined at the freezing front and at x = {0, x,},
where x, is arbitrarily large to approximate the second condition stated in Eq. (9).
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The trial functions @e to be used in each local finite element 0¢ are the two fami-
lies defined on ¢° by
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where the {A;, M;} trial function family depends on whether there is accumulation of

heat within the finite element £2° and the subscripts denote a concave-down or concave-up
function. The definitions of {N;, M;} used are
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where 7 is a finite-element local coordinate for a two-endpoint-node element with nodes

at 3 = (0, 1). The order n of the shape functions is determined by the numerical model

as part of the problem solution. Consequently, knowledge of the nodal values and the

order of the trial function polynomial gives a significantly better estimate of the solution
interior to each finite element than is obtained by the linear trial functions often used.

NUMERICAL METHOD

The local element matrix systems for finite element 2% are given by

()
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where * indicates the evaluation of flux at finite-element boundaries and Z, is chosen
such that P® is symmetric. That is,
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defines Z,, for each local finite element £2°.
From Eq. (13),
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where 7 is the order of the N; shape function family, For the MV, trial functions the vari-
able lumped-mass capacitance matrix is given by

cre [(n—a) a
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The conduction matrix is also a function of time and is given by
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where for nonlinear problems X is the thermal conductivity evaluated at ¥ = Z,.

Examination of the local element matrix systems indicates that a time-dependent
lumped-mass scheme has been developed in which the element conduction and capaci-
tance matrices change as the solution progresses in time. The element matrix varability,
however, needs to be defined so that the matrices can be developed. Initially, the order
of the trial function is specified based on knowledge of the initial conditions of the prob-
fem.

For modeling purposes, an explicit finite-difference approximation is used to ap-
proximate

=0 (17)

where for the normalized heat transfer problem, Eq. (17) is approximated with
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where the superscripts are time step notation. In Eq. (18), g?&"’ is the trial function in

local element ¢, and the second derivative is evaluated based on the most recent as-
sumed order of the trial function. From Eq. (18),
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where At is the time step size, which is also determined as part of the problem solution.
To evaluate the time step, the model assumes the usual explicit method stability
criteria, i.e.,
At 1

i <3 Lx=minl - Z), 12 ] (20

From Egs. (19) and (20), ¢"**(Z,) is approximated. From Eqg. (2), the nodal values ¢°
are approximated, Updated values of the trial function order 7 are determined by passing
a trial function through the new ¢° values and ¢'*'(Z.) for each successive time step
advancement.
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MODEL APPLICATIONS

Problems of heat transfer with and without soil water phase change in a freezing
soil were numerically modeled by the proposed methods. To begin the mode] solution,
an initial condition is defined to closely approximate the actual initial conditions of the
problem. For example, a polynomial trial function of arbitrarily high order (n = 100) was
used for the initial trial function approximation of temperature in the finite element for
the heat transfer problem without phase change. The well-known Crank-Nicolson time
advancement method is used to solve for the time derivative of temperature. The model
determines the time advancement time step size A#, subsequent trial function polynomial
orders 7, and mass-lumped matrix symmetry [ocal coordinates Z, as part of the model
solution according to the equations given above,

Because of the simple computer coding and minimal requirements for model
variable storage, both test problems were numerically approximated with a programmable
hand-held calculator. A Texas Instruments 58A calculator was used in this study, but
other programmable calculators are equally suitable for problems of this level of com-
plexity. .
Figure 1 shows computed normalized temperature profiles at various unit time
levels along with the analytical solution profiles for the normalized heat transfer problem
without phase change. Approximation profiles were plotted by using the single (mid-
point) nodal temperature values from the finite-element model and incorporating the
approximated polynomial trial function. Figure 2 shows the modeled parameter varia-
tions of n, Z,, and At plotted against the model time step number, From Fig. 2, the
initially high-order polynomial trial function model utilizes a small time step size. As the
solution progresses in time, the polynomial order approaches the limiting value n = 1.66;
the model time step At and other model parameters also approach limiting values, as
shown in Fig. 2.

For the two-phase Stefan problem, Fig. 3 shows modeled and analytical values of
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Fig. [ Analytical solution {dashed line} and approx-
imation results (solid Iine) for normalized heat trans-
fer problem with a one-finiteclement model.
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Fig. 2 Plot of model variables Az, Z,, and trial function order n in approximation of normalized
heat transfer problem.

the freezing front penetration into a soil column, Values of 0.62 calfem® for C, 9.6 X
1073 cal/em-s*°C™! for K, and 17.68 cal (per cubic centimeter of soil) for L were used,
which are appropriate for a water-saturated, dense sand. The same problem was con-
sidered by Lynch and O'Neill {1]. Figure 3 shows that good agreement is obtained in the
prediction of freezing front penetration when the two-element numerical model is used.
Ounly the initial portion of the numerical model results is shown in Fig. 3 because of the
continued close agreement between approximated and analytical results. The results
from the proposed model closely match the numerical modeling results from Lynch and
ONeill, whe used a computationally more elaborate method based on a Galerkin finite-
element convection-diffusion type of model with a deforming one-dimensional grid
approximation, which also required 10 Hermitian cubic elements in the finite-element

model.

CONCLUSIONS

A new efficient numerical method has been employed with the classical two-phase
Stefan problem. The proposed method is based on the nodal domain integration (variable
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Fig. 3 Analytic solution (solid line) and approximation results
(points) in model of two-phase Stefan problem.

lumped-mass finite-element) method, and incorporates a sophisticated variable-order
polynomial trial function within each finite element. Some advantages of this family
of “smart” trial functions are as follows:

1. Reduces the need for fine discretization of the one-dimensional domain near
the freezing front,

2. Reduces the need to use a moving-boundary variable finite-element mesh.

3. Reduces the number of finite elements needed to produce similar levels of
approximation accuracy.

4. Provides supplemental trial function information, which can be used to ac-
curately analyze the function surface within large finite elements.

5. Models a sharp function surface or interface with a minimum of finite elements.

Although the test problems presented in this paper are simple, an extension to more
general one-dimensional problems should result in more efficient codes, especially for
problems that involve interface or sharp function surfaces in the solution. Extension of
the method to muitidimensional problems is not obvious and requires further research.
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