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ABSTRACT

A unifying numerical method is developed for
solution of frost heave in a vertical freezing column
of soil. Within one general computer code a single
unifying parameter can be preselected to employ the
commonly used Galerkin finite element, subdomain
weighted residual, or finite difference methods as
well as several other methods developed from the
Alternation Theorem, Comparing results from the
various numerical techniques in the computation of
frost heave to measured frost heave in a laboratory
column indicates there is little advantage of one
numerical technique over another. One numerical
technique, the subdomain method, was used to in-
vestigate discretization errors. The model is relatively
insensitive to spatigl discretization but is significantly
sensitive to temporal discretization. The primary
reason for this is that an updating procedure, rather
than a more accurate iterative procedure, is used to
evalugte nonlinear parameters that arise in the
moisture transport and heat transport equations.

INTRODUCTION
Guymon et al. (1980) and Hopke (1980) review

much of the recent effort to develop comprehensive
mathematical models of frost heave. These models

can generally be classed as conceptual (or deter-
ministic) models which are developed from physics-
based knowledge or assumptions. Generally, most
modeling efforts include a simultaneous computation
of heat and moisture transport in & freezing soil.
Models, however, differ significantly in the manner
in which latent heat effects are estimated and in the
manner in which ice segregation is assumed to occur.
The more advanced efforts to model frost heave have
demonstrated that numerical modeling is & feasible
tool for analysis of frost heave.

This paper will examine the choice of a numerical
analog of the conceptual physics-based equations
used in a particular model, i.e. the model investigated
by Guymon et al. (1980) will be used as a test case.
In order systematically to carry out this purpose, a
unifying numerical analog is developed so that
appropriate comparisons between numerical methods
can be made using identical computer code. Because
most models presented in the literature assume the
same flow equations, the results presented here are
generally applicable. The unifying numerical method
that will be used is the nodal domain integration
method which represents the subdomain integration
method and the common Galerkin finite element and
finite difference methods by the specification of a
single constant parameter in the resulting spatial dis-
cretization matrix system. The nodal domain integra-
tion method has been developed for linearized one-
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NUMERICAL MODELING APPROACH

In this section, the nodal domain integration
numerical method is briefly reviewed for the reader’s
convenience. By using the subdomain version of the
weighted residuals method defined on subsets of a
finite element discretization (nodal domains), an ele-
ment matrix system is derived similar to the element
matrix system developed for a Galerkin finite element
analog. The nodal domain integration element matrix
sysiem is found to be a function of a single param-
eter where the Galerkin finite element, subdomain
integration, and finite difference methods are repre-
sented as special cases. Consequently, the develop-
ment of a numerical model based on the nodal
domain integration method also results in a
numerical model based on the more popular Galerkin
finite eclement, subdomain integration, and finite
difference methods:

A(C) = f; x€Q, Q= UT 6

with boundary condition types of Dirichlet or Neu-
mann specified on boundary . An r-nodal point
distribution can be defined on £ with arbitrary
density (Fig. 1) such that an approximation C for C
is defined in £ by

€= L NwG; xen @

where N;(x) are the usual linearly independent global
shape functions (Zienkiewicz, 1977) and C; are values
of the state variable, C, at nodal points f.
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Fig. 1. Nodal point distribution in a one-dimensional domain,

In eqn. (2) it is assumed that

im€ = lim€

H—oo max %, xgll-+eo

=, x€8 3
A cover of £ is defined by

n
1=uU R (4)

where a closed connected subset R; is defined for
each nodal point j such that

Xi € Rj; xj & Ry, j#k &3]
and
Rj = Ry U B; {6)

where x; is the spatial coordinate of node 7, and
By is the boundary of subdomain R;. It is also
assumed that

RiNRy = BN By (7)

The subdomain version of the finite element method
of weighted residuals approximates eqn. {1} on £
by solving the # equations

Ja©-pwax =0 (®)
o
where
1, xERj
wy = )
0, x¢Ry

A second cover of £2 is given by the usual finite ele-
ment discretization

Q= uO° (10)

where QF is the closure of finite element and its
boundary I'*, A set of nodal domains S'l‘; is defined
for each finite element £2° by

= Q°NR;, JES, (11)

where §, is the set of nodal point numbers defined
by

Se = Y10°nas = {9} (12)

That is, 5, is the nodal point number associated with
§2.. The subdomain integration numerical model of
eqn. (8} can be rewritten in the terms of the sub-
domain cover of by

Ja©-pwax= [a© -nex  3)
Q Rj
With respect to the finite element discretization of &

.Rf “O-nix=]  @o-nix @4
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Fig. 2. Nodal domain cover.

For the assumed finite element discretization of §2,

the element matrix system for the finite element £2¢
is given from egn. (18) as

ac

kl _—

0x

£ €. e
[] ljﬁf'

oC
f ks —dx

where for an interior finite element (e # 1, n—1),
Se = {e,e+1}. Thus, eqn. {22) can be rewritten for
an interior 2° and an assumed linear trial function,
C,on Q¢

[/ aC
(5 )
ax (xe+xe+:)n"2
b2
—_ kl —_
ax
acC

ky — dx
qf or

®O | (xyx, 2

~ (k2 0) |(xg+xe“)12

o i

{xptxe, )2 |

=1 (23)
f ac
k; — dx
ng ot

where the second term of eqn. (22) cancels due to
neighboring finite elements. Hromadka and Guymon
(1981) show that for a first-order polynomial trial
function C for the state variable C in each finite
element, and for the assumed definitions of the sub-
domain and finite element discretization of problem
domain £, the Galerkin finite element, subdomain
integration, and finite difference numerical analogs
can be represented by a single element matrix system
similar to eqn. {23) for finite element Q¢

- {&.C} '[‘:‘;an" ~{k.C} ‘r'f—r;’m I

ki [1 -1“09 ‘Jrk,[l —1] C. { )
le _1 1 Ce+1 2 1 -1 Ce+1

ks [n 17 Y0C/8r
) 2(n+1)[1 n] %aceﬂ/ar& @9

where i = (2,3,%) gives the Galerkin finite element,
subdomain integration, and finite difference models,
respectively. In eqn. (24) the nonlinear parameters
(ky, k4, k3) are assumed constant for a small duration
of time At, I, is the length of finite element Q°,
and C is the nodal point value. Generally, convection
is assumed to be negligible in eqn. (24) and the &,
parameter is set to zero. For this study, however, con-
vection is maintained but approximated as a constant
for a small duration of time Az,

From eqn. (24), a single model can be developed
which can represent the Galerkin finite element,
subdomain integration, and finite difference methods
for approximating the governing heat and soil water
flow equations. The method of linearizing the
governing flow equations Is to assume all nonlingar
parameters to be constant during a small timestep
At. From the above, the element matrix system used
to approximate the governing flow equations in finite
element 0° becomes

ky [1 a1]c,,, ks [n 1Hace/a:
le 111 1 4H{Ceyy 2+ L1 nl{3C,, /ot
k, 1 -1N8C
s
z b e,
where {C,, Ce.y} are temporally averaged nodal
values during timestep Af. The Crank—Nicolson time

advancement approximation can be used to integrate
eqn. (25) with respect to time giving

(H(n) +3A:G) C®98 = (H(n) -1 A1 G) CF8!
- fAt (26)

where € is the vector of nodal point values at time
(k+1)At and kAt; 8 is an assumed constant value for
convection in F during timestep Az; and the elernent
matrices are given by

o[}



where (/) represents the jth-order temporal partial
differential operator. Then

{kl a { EA(’)(kAt) — -aE , (35)
dx B =0 0x B

A function n(t) is defined by

f Ctx = o (t) S G20+ Gl (36

where I = IR; I, and

n{#) # -1 (37)

The value of =3 in eqn. (36) corresponds to a first-
ordes polynomial € function subdomain approxima-
tion for C, whereas n(¢) = 2 corresponds to a Galerkin
finite element model, and n(f} = % determines a
finite difference model.

The C approximator is also defined to have the
property
feaw= féa, a2 (38)
Ry R;

Substituting eqns. (35) and (36) into eqn. (22) gives
the modeling statement (for convection B quasi-
constant during timestep Af)

de

32 A(”(kAr) o t
By

1[CE, +2Cn(kAr+A) + CF )

= ky(kAt+Ar) 2n(kAr+An + 1]

. 7 Ec + 2C n(kAl’) +C +l]
ks (kAt) 2 [n(kAr) +1] e
(39

where C}* = Ci(kAt+Ab); C = Cj(kAt); and where k5
is agsumed uniform in Ry, and

En(‘)(km) —; O<e<<Ar  (40)
i=0

n(kAtte) =

Integrating the conduction term in egn. (39) on °
gives

_ 1y i+l
o) = 1« A4
L i i1(i+2) )
_  )AEB;, AEQ, (41)
- 1 =, A90an™
AQ) = = 2o —
L i @+

The nodal domain integration element matrix system
similar to eqn. (26) is given by

(H+G) {CYFDN = (1 ~§) {CPH™ -pAr (42)

where

60 [1 7]

o~ i [

He) = 2(l+1) ["7 %]

and where 7 = n(kAr+AD, 7 = n(kan, I, = 1961,
and X is the midpoint of Q°,

RESULTS

The numerical models of eqns. (26} and {(42) were
used to solve the governing heat and soil water
flow equations as used in the Guymon et al. (1980)
frost heave model, Since the only variation of the
numerical model required to determine a Galerkin
finite element, subdomain integration, finite differ-
ence, or nodal domain integration analog is the
adjustment of the n term in eqn. (26), a single
computer code may be used. As a result, variability
normally inherent between computer programs is
entirely eliminated, giving a precise comparison of
numerical methods, A Fairbanks silt vertical soil
freezing column test as described in Berg et al.
(1980) is used as the test case for determining the
sensitivity of the frost heave model to the method of
numerical simulation. The laboratory test used is for
a soil column freezing case in which frost penetrated



the choice of numerical model for the one-dimen-
sional problem considered here are much less than
errors introduced by parameter uncertainty (Guymon
et al,, 1981} and by boundary condition uncer-
tainty.

It should be noted that Table 3 lists the numerical
approximation results for the largest timestep size
used in this sensitivity study. A smaller timestep gives
significantly better approximation results as is indi-
cated in Table 3 for a timestep of 0.5 h (for n=3).
This increase in approximation accuracy is mainly
due to the better modeling of the nonlinear param-
eters used in the frost heave model.

CONCLUSIONS

A frost heave model is examined in an effort to
determine the sensitivity of predicted frost heave
values to the choice of numerical method used to
solve the governing heat and soil water flow equa-
tions. A computer code based on the nodal domain
integration method accommodates several other
numerical analogs by the specification of a singie
constant parameter i in the resulting element matrix
contributions; consequently, sensitivity of the frost
heave model to the method of numerical simulation
can be determined by the variation of the single
parameter 7.

From the simulation results, the Guymon et al.
frost heave model shows negligible sensitivity to the
numerical approach used to solve the governing flow
equations, Although sensitivity is observed initially
for a large timestep choice, all frost heave evolution
curves are found to merge at the end of the 25 day
simulation. Since freezing soil problems are generally
subjected to freezing temperatures for durations in
excess of 25 days, it is concluded that negligible
sensitivity occurs due to the numerical approach
chosen to modei the heat and soil water flow equa-
tions in the considered frost heave model. One
numerical method is as good as another. Variations
between the variousty proposed models {e.g. as
reviewed by Hopke, 1980) will primarily depend
upon efficiency of code and user orientated features;
there seems to be little point in debating the virtues
of a particular numerical method. We conclude that
modeling errors that can be associated with model
choice (egn. (1)) will primarily be related for the

choice of governing equations and ancillary assump-
tions used in 2 model. Whether we can definitely
isolate errors associated with the choice of such
equations and assumptions will depend on our ability
to isolate the other errors we have identified.

The type of model investigated by Guymon et al,
{1980) shows minor sensitivity to spatial discretiza-
tion while there is significant sensitivity to temporal
discretization. This is largely due to the nonlinear
nature of the problem we are dealing with and the
updating method of adjusting nonlinear problems.
True iterative techniques would probably show less
sensitivity to temporal discretization but would
recaiire considerably more solution time.

Our results suggest that solutions are reasonably
bounded. Consequently, the fact that our model does
not account for all processes occurring at the freezing
front is not a significant concern from an engineering
applicability criterion. Provided boundedness can be
defined, the model can be employed with a certain
level of confidence in the statistical sense.

NOTATION

A( )  partial differential operator

Cm volumetric heat capacity of soil--water—ice
mixture

Cw volumetric heat capacity of water

Ky Darcy hydraulic conductivity

Ky thermal conductivity of soil-water—ice
mixture

n number of nodal points

Ni(x}  shape function

H finite element capacitance matrix

G finite element stiffness matrix

t time

Ar timestep of numerical temporal integration

T temperature  of soil-water—ice mixture

C state variable, ¢ or T

v Darey flux

X spatial coordinate

& total hydraulic head, ¢ = ~x (x measured
downwards)

Y] pore water pressure head

0 global domain of definition

Qf finite element domain

Ry subdomain

Qf nodal domain



A& T &

boundary of glohal domain

finite element boundary

nodal domain boundary

subdomain boundary

quasi-constant value of convection term
during timestep Az

freezing point depression of water

goil surface temperature boundary condition
column bottom temperature boundary con-
dition

column bottom pore pressure boundary con-
dition

surcharge plus overburden pressure expressed
as hydravlic head '

porosity

volumetric unfrozen water content factor
volumetric unfrozen water content
volumetric ice content

density of ice

density of liquid water

latent heat of fusion

thermal conductivity of ice

thermal conductivity of water

thermal conductivity of soil

volumetric heat capacity of soil--water—ice
mixfure

volumetric heat capacity of ice

volumetric heat capacity of water
volumetric heat capacity of soil

length of finite volume of soil

timestep increment number, k = 0
nonlinear operator parameters, {=
length of subdomain

length of finite ¢lement

state variable

higher-order trial function

linear polynomial trial function

1,2,3

G nodal point values of state variable C at
node f

C]’f CilkAt+AD

¢ Ci(kAr)
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at an approximately uniform rate until a depth of
15 cm was reached at about 25 days after initiation
of the test. Frost heave proceeded at a more or less
uniform rate during this test. During the test all
components of the system were in a dynamic state.

Using identical problem initial and boundary con-
ditions, a 25 day duration computer simulation was
made varying timestep and element discretization
magnitudes as well as varying constant values of g
given in Table 2. Values of timesteps used in the tem-
poral numerical integration (Crank—Nicolson time
advancement approximation) are Az = (0.1, 0.2, 0.4,
1.0, 2.0 h). Constant finite element sizes used are
Ax = 1Q°%1 = (3, 1, 1.5, 3.0 cm). For each combina-
tion of (Ax, At) values, constant values of 7=(2, 3,
5.9, 7, 11, 10000) were tested representing a linear
trial function Galerkin finite element, subdomain
integration, nodal domain integration linear approx-
irnation of a sinusoidal and parabola trial function,
subdomain integration model of parabola trial func-
tion, and finite difference numerical analogs, respec-
tively.

Figure 4 shows the results of varying timestep and
spatial discretization using the subdomgzin method
(n=3). Simulated heave is compared to measured
heave for a laboratory column and error in percent
is computed by taking the difference and dividing
by measured heave after 25 days. Similar results
to Fig. 4 are obtained for shorter durations of time.
As can be seen, there is slight sensitivity to spatial
discretization, and marked sensitivity to timestep size

Error (%)

for advancing the solution in time. A timestep of
about 0.5 h gives the best result, It is important to
note that the method proposed by Guymen et al.
{1980) uses a simple update procedure to adjust non-
linear parameters rather than a possibly more accu-
raie iteration procedure normally employed with
nonlinear equations.

Table 3 compares computed frost heave for a
timestep size and update frequency of 2h and a
spatial uniform discretization of 3 cm. Results shown
in Table 3 are typical of results obtained using choice
of different timesteps and mesh sizes. As can be
seen there is initially some sensitivity in the numerical
method; however after 10 days, differences between
numerical methods are slight. Errors associated with

TABLE 3

Comparison of results for various numerical methods (time-
step=2h, Ax =3 cm)

1 Cumulative frost heave for indicated day

5 10 15 20 25

2 0.61 2.22 2.85 352 4.46
3 0.66 2.26 2.88 3.52 4.46
7 0.72 2.29 2.90 3.49 444
1

1 0.74 2.29 290 348 443

o 0.77 2.29 290 346 4.41
Measuzed | 1.6 2.8 39 4.4 5.0
timestep | 1.3 2.5 3.4 4.2 5.0
=05h

Fig. 4. Frost heave simulation egrror as a function of spatial and temporal discretization.



_ kgie n i
Hem = 2(n+1) [1 77] (28)

Hromadka and Guymon (1982) also examined
two methods of approximating a higher-order or
more complex family of trial functions by a linear
polynomial trial function. One method used the
Alternation Theorem (Cheney, 1966) to determine an
optimum linear polynomial estimate of a higher-order
approximator. Using an adjusted linear trial function
C approximation of a higher-order trial function ¢
approximation of the state variable C in each finite
element 2° (Fig. 3), it was shown that the gradient
terms due to conduction were given by eqn. (27), but
the integrated mass matrix term was given by eqn.
(28) with values of n depending on the function
definition of €. For example, given a sinusoidal trial
function C in cach €2, an optimum linear approxima-
tion € of Cin $2€ results in a value of n =359, Fora
parabola trial function C in QF, eqn. (28) is deter-
mined to be given by n = 7 when C is approximated
by a linear trial function in each Q°. Additionally, by

I o —t nj-- !
i |
4 (L :
! | i-t i
| N ',
11
: ¥ ! | !
‘ i
= | i ) ]
C i ! ! [
A h ‘ I A
c7 |' . ) { C
| |
R T
=i

o
o

Fig. 3. Adjusted linear trial function using the alternation
theorem.

TABLE 2

Nodal domain integration n-factor representations

71 factor Numerical method
2 Galerkin finite element (linear trial func-
tion)
3 Subdomain (linear trial function)
59 Linear trial function approximation of
sine function
7 Linear trizi function approximation of
parabolic function
11 Subdomain (second-order polynomial trial
function)

w {gg. L0000)  Finite difference

assuming C to be given by second-order polynomials
in each subdomain Ry, integration of the governing
flow equations results in 7 = 11. The various sub-
methods of the nodal domain integration concept
(using the Alternation Theorem) derived to date are
listed in Table 2.

A second method of approximating a higher-order
ot more complex family of trial functions € for the
state variable C is by use of correction functiong for
both the integration and differentiation of C in each
subdomain R;. This approach was found to give the
best numerical accuracy for the problems tested, and
resulted in a numerical statement similar to eqn. (26)
but with 5 a function of time, and variable between
finite elements. This approach is reviewed in the fol-
lowing.

Let C be 2 linear approximation function of a
higher-order approximation ¢ of C in an interior sub-
domain R; where the spatial gradients of C on B; are
defined by

%a_éi l _(Gu-G)  G-G)
ox 1}' ’

lj‘l

G =1/ (29)

A spatial gradient adjustment function k(x,r) is
defined by

ac /aC
— = Q< h<oo
ox ox
h(x,) = 30
i : otherwise
1t is assumed that
k o kih o 3D
Y ax ! dx
whete
ac ac
kl —_ = klh — (32)
ox 8 ox B
On B;, define
= A(t), kAr<r<(k+1)Asr (33)
such that
i
A(kAr+e) = Z;A@(km) = 0<e<ar (34

=0



where for each finite element domain £2°

S a©-na = fu@-nax 03

4 .
Q9NR; 25

From eqn. (15), the subdomatn method of weighted
residuals determines an element matrix system for
each finite e¢lement £2° by the integration of the
governing equation on each member of the nodal
domain cover §27. The spatial definition of each nodal
domain §2¢ depends on the definition of both the
finite element and subdomain discretization of £2,
and is therefore somewhat arbitrary. A convenient
criterion is to define the nodal domains such that the
resulting finite elernent matrix system is symmetric.
This symmetric property is used for the definition of
the subdomain cover Ry of 2 in the following model
development of a one-dimensional advection diffu.
sion type process. Exicusion of the one-dimensional
nodal domain integration procedure to two-dimen-
sional problems are contained in Hromadka et al.
{1981).

The governing heat and soil water flow equations
can be written in the operator relationship

A ;= a[k ac:, a[kC‘} kBC.
2 N ox lax ax 2 o’

x€EN {i6)

where all parameters are assumed 1o be continuous in
02, and where for the heat flow process k; = thermal
conductivity, ky =Cyv, k3 =y, and C = tempera-
ture, T. For the soil water flow equation &, = Ky,
ky =0Q, k3 =88/0¢, and C = ¢. The ice content
terms of both flow processes are not needed in eqgn.
(18) due to the isothermal phase change approxima-
tion used by Guymon et al. (1980). Therefore, eqn.
{16) is solved for heat and soil water flow processes
during a small timestep A¢; then, the computed values
of unfrozen water content, ice content and tempera-
ture are recalculated to accommodate jsothermal
phase change of available soil water. Substituting the
operator relationship of eqn. (16) into the integra-
tion statement of egn. (15} gives an element matrix
system for finite element £2°

[ ) 2 wan e - o

FES. (17

Expanding eqn. (17) gives the element matrix compo-
nents for the conduction, convection, and mass terms
of the operator relationship

ac aC
ikt -a“ % {k2C|I~ npe}+ 3}(:1
X I‘;ﬁl‘e
rf-rfnr® af
JES, (18)

The first matrix term of eqn. {18) cancels due 1o flux
contributions from neighboring f{inite elements or
satisfies zero flux (Neumann) boundary conditions on
. In order to develop the element matrices for Q¢
from eqn. (18), a definition of 4 subdomain and finite
element discretization of domain £ is required.

A cover of spatial domain §2 is given by the set of
n closed connected subdomains Ry defined by

Ry = {x10=x; Sx<(x;+x3)/2}
Ry = {3 (rptxa)/2 <x <(xp+x3)/2} {19)
Ry = {x}(xp-rtxp)2<x<xp=L}

where x; is the spatial coordinate associated to nodal
point value Cj. In eqn. (19), G represents nodat point
values of temperature and total hydravlic head for
the heat and soil water flow equations, respectively,
In the following, the definition of the subdomain
discretization of £ given in eqn. {19) will be shown
to result in symmetrical efement conduction and ele-
ment mass matrices.

The finite element discretization of domain £ is
assumed o be composed of one-dimengional elements
defined by

Q! = {xix, <x<x,)

Q2 {x|x; <x<€xs} (20)

n

Q"= {xlxpe SXSxp)

The nodal domain cover of global domain Q is
defined by the intersection of the finite element
and subdomain covers of £2 (Fig. 2)

Q= {xlx,<x<x,/2}
Q; = {xlx/i€x<n,) (21)
Qﬁ—l = {xl(xn-1+x1g)/2 <X an}



dimensional transport equations (Hromadka and
Guymon, 1982) and has been extended to two
dimensions using linear trial functions (Hromadka et
al,, 1981). These references include evaluation of
numerical errors when comparing to exact solutions.
Hromadka and Guymon (1980) examine some effects
of linearizing nonlinear equations. In this paper, the
nodal domain integration method is applied to a non-
linear coupled heat and moisture transport problem.
The application of nodal domain integration to such
problems is a new contribution. Furthermore, the
application of numerical solution techniques to the
frost heave problem is a rather new endeavor and one
aspect of the problem, the choice of numerical tech-
nique, deserves examination.

Previously, Guymon et al. (1981) discussed
model errors and examined in detail errors associated
with parameters of a deterministic model of frost
heave, Four arbitrary groups of errors were identi-
fied:

1. Model errors including numerical analog errors.

2, Spatial and temporal discretization errors,

3. Boundary and initial condition erross.

4. Parameter errors.

Numetical analog errors may be investigated in
simaple cases by linearizing a problem and comparing
a numerical solution to an analytic or so-called
“exact” solution. In the case of our multiparameter

TABLE 1

Deterministic equations for one-dimensional frost heave model

model, it is highly nonlinear and heat and moisture
transport are coupled through the parameters arising
from the conceptual assumptions employed. Further-
more, several anciliary equations are used to estimate
parameters and processes involved, The only realistic
way of evalvating errors is to comnpare model output
with prototype output. This approach is highly effec-
tive in this case where lumped frost heave represents
or integrates all the complicated processes oceurring
in a freezing soil. A set of data obtained in the
laboratory for Fairbanks silt is used for comparison
with numerical solutions.

A particular deterministic model of one-dimen-
sional frost heave in a vertical saturated or partly
saturated soil column is used herein (Guymon et al.,
1980). Details of this model will not be repeated
here. The modeling concept is shown in Table 1.
Symbols used in this table are defined under
“Notation”, Moisture flow in a partly saturated
column toward a freezing frost is assumed to obey
continuity and Darcy’s law. Sensible heat flow in
both the frozen and unfrozen zones is estimated.
Complicated processes in the freezing zone are
lumped into an assumed isothermal freezing process,
This process controls the rate and magnitude of frost
heave in the model and integrates all other model
processes.
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