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The nodal domain integration method is applied to a one-dimensional advection-diffusion
mathematical model without a source term. Comparison of the resulting numerical model 1o the
well known Galerkin finite eletnent, subdomain, and finite difference domain models indicates that
a single numerical statement can be developed which includes the Galerkin finite element,
subdomain, and finite difference models as special cases.

INTRODUCTION

The determination of an optimum numerical method to
mode] problems analogous to seil-moisture transport in a
one-dimensional domain has received some recent
attention. The primary numerical modelling {domainj
approaches has generally been either the Galerkin finite
element or finite difference methods. Pinder and Gray'®
present a comparison of these two modelling approaches
for a linear, one-dimensional advection—diffusion
probiem where the advection component is large; the
finite element method is concluded as superior. Hayhoe*
demonstrated that a finite difference analog produced
better numerical accuracy than a finite element model for
anon-linear soil-water diffusion model problem in which
a highly sensitive soil-water diffusivity parameter caused
# sharp wetting front, making a numerical modelling
effort difficult. Hromadka and Guymon® re-examined the
sharp wetting front problem with a finite element
numerical model using a guasi-constant element soil-
water diffusivity computation scheme; the numerical
model results were found to be comparable to Hayhoe's
finite difference analog results, but gave a better
prediction of the wetting front penetration. In a mote
detailed study, Hromadka and Guymon® integrated the
soil-water diffusivity parameter with respect to time and
determined another modeiling approach {nodal domain
integration) to the sharp wetting front problem, In this
later study, other comparable numerical methods {finite
difference, Galerkin finite element, subdomain
integration) were rewritten into a single matrix system
modelling statement of nodal point values and equation
parameters similar to the element matrix system
generated by the Galerkin finite element method. This
resulting element matrix formulation is strictly a function
of the element capacitance (time derivativel matrix
diagonal entry as determined for a linear polynomial trial
function approximation between nodal  points.
Consequently, numerical ‘efficiency’ 37! in modelling
a one-dimensional diffusivity model of soil-water
iransport could be viewed as a function of a single element
maltrix systemn parameter. In order to better estimate the
soil-water content function spatially, Hromadka and
Guymon?®, examined two methods of approximating a
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higher order or more complex family of trial functions
between nodal points by a linear polynomial trial function
approximation. This technigue would incorporate some
of the benefits provided by a higher order state variable
approximation between nodal points and yet retain the
symmetry and smaller matrix bandwidths resuiting from
a tinear trial function approximation. Both approaches
resulted in the combined matrix system statement
identified above but with the element capaciiance matrix
diagonal component variable with respect to time and
space.

The purpose of this paper is twofold. First, the
advection—diffusion equation is analysed to determine an
appropriate element matrix modelling statement which
incorporates the finite element, finite difference, and
subdomain integration modelling approaches. The
second objective is to model a higher order spatial trial
function approximation berween nodal points with a
linear trial function approximation in a diffusion
dominated process. This linear approximation effort is
based upon determining a higher order trial function
approximation of the state variable between nodal points
using information provided by the spatial distribution of
the time derivative of the staie variable. For numerical
model development, a Fickian dispersion process of a
conservative dissolved species with solute concentration
C within pure water is considered as a case study.

NODAL DOMAIN INTEGRATION MODEL
DEVELOPMENT

The one-dimensional form of the advection-diffusion
equation for non-reactive dissolved constituents in
saturated, homogeneous, isotropic materials under
steady-state unpiform flow is:

ef .ec] @ o
(1
Q={x[0sx<L}

where x is the spatial coordinate taken along the flowline
direction in spatial domain £, U is the mean linear flow
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velocity; D is the coefficient of hydrodynamic dispersion in
the x-direction; and C is the solute concentration.
Chemical, biological and radioactive effects are neglected.
Inequation (1), the parameters P and U are leit within the
spatial gradient terms in order to provide a more general
numerical model development.

The domain Q can be discretized by n nodal points C;(j
=1,2....,n} into » disjoint subdomains:

Q =0 +x,)/2)
Q, ={xl(x; +x,)/2 < x Khx, +x3)/2} 2)
Q= (xXf,my + X2 <xEx,=1)

where x; is the spatial coordinate associated to nodal
point value C,, and

0=Ug, (3)

i=1

Equation (1) must be satishied on each €2; Therefore, n
equations are generated by solving:

éf ecl ec ¢
E—xlba]_a""a[[](:], xeQ, ¥V, (4)
where it is assumed
D=D{C)
5
C=C(x,t)} (5)

Integrating equation (4) with respect to space gives the
subdomain modek:

where I'; ts the spatial boundary of region (), Integrating
equation (6} with respect to time gives:

:)s ~

JC dx -+ {UC}’;erJ-; ¥, (6)

r

} i

(k + 1AL

| P&

kar r,

(.k+ 1Az

{UC}; dr ()

dt—j L}{ dx +
o, i

AI T,

where T, is the limits of temporal integration between
timesteps kAt and (k + 1)At. Equation (7) can be rewritten
by using the linear transformation:

)
Thus,

ar

J‘ {D(km-ra]ig{%;ﬂ}; de= f ChHidx+

Q I, o, r,
A
J {UltkAr + e)ClkAr +¢)} % de
° 1y 9)
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The diffusivity and advection parameters can be
expressed with respect to time by the Taylor series:

x (i)
Ex=x,, kAt + &)= ZE_(X_X_Q_kéﬂ

¢=U, D(10)

where (i} is the ith order temporal partial differential
operator; and x, is a specified spatial coordinate.
Combining equations (7} and (10) gives:

At

= DU kAL N\CCkAL +£) | I
j {(‘,:ZO it ) £x }1 dé_J‘{C}i o
0

r Q, r,

'

A

[{(5 7% Yk o]
i=0 ) i
¢

r

de (1

For a spatial local coordinate system defined by:
y={yl0<y <, xeQ)}
dy=dx (12)
L=
Equation (11) can be expanded as:

At
:‘leU{y: 1LKkAD f {.:C(kiwf)}i de
|y=1

i=0 i!
0

At

o iy, — A LaCtk
ZD {y =0,kAt) E:{“C( At+e)} | de

cy

i=0 it

i

§ U =Lk !
=j{(}ld} V= 7 - I)j {C(kAt + )} i de
Q, r, y=1,
% Uy =0 kA l
Zgi-—i{ £ ClkA + o)} i de (13)
i=9

y=0

To this point, equation (13) is an exact statement of
equation (1), and to proceed to a solvable numerical
algorithm the following inexact approximation is made:

Cx~

¢
N n k+1
-$(3 Mmcr)
r=1

(14)

where the solute-concentration function is approximated
spatially and temporally and where N, and M, are the
linearly independent spatial and temporal shape
functions, and

Cr=Clx=x, t=m At) {15)

where the CM are known values for timesteps m
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=1{0,1..._k}, and x, is the spatial coordinate of node . The
spatial gradient of the soil-water content function is
approximated by:

~ ~ n k+1
ocC ZaN(Z M C"') (16}

dx ~ éx & éx

Substituting equations (14) and (16) into equation {13}
gives the numerical approximation:

D“’(y—l kAI)f J = &N, ("” )} P de—
[} = '

At

aLD(l"y =0kA . n oA k+1
Z (,V. kAL 8.{2‘"{\;(2]‘4"‘?)} ! ds
- }
=0

[1a

!
i=p L

dy+ {17)
= ( = n k+1

sl g fo

=0 = 2

= Uy =0,kAr)

z*—j‘* Afw(Tme) E

¥=

The unknown values of nodal points C**? can be solved

by:
= D‘”{y I},kAr) { 2 BN,MHIC,H,} ! de—
i= y=i,
. A
iDtu(y—_;,O,km) E'{ZCNerﬂC"”} | a4
i=0 - r=1 7.
y=0
L
Lﬂ%y—Okan

S PLERENSS
O

i
i=0 I

R

@ prling {n |
Y ——— L=l kAI)j Sl{z NM, . 1Cfﬂ} i de
r=1

i=0¢
0 p=l,
i Ar ] ‘
_ & DMy=0kan [ (Z N,/ & -
_izo%i! '( a{’_z‘ = (MEOM’"C' [ _( de—

o y=0

i D‘”{ ¥ *—EJ,AAI}

=.= {; i( ZOM,,,C;“)} i ds—

fZN@M+Z

{i) ,
Uy =1,kAr) N
Py it

Of L{Zn N(ZM C?)} F o= (13)
el ol )|

i=0 r=1

y=0

DISCRETIZED DOMAIN NUMERICAL MODEL

The space-time surface approximated by equation (14}
can be simplified by assuming that the functional surfaces
C(x,) can be described by sets of piecewise continuous
functions. For a first order polynomial spatial trial
funcnon approximation C for C between nodal points
(CJ ]& _;1-1)

& | .
?;] =(Cy, =~ C \
y=i
8¢ |
a} =(C;—C,_ /1
y=0
; } (19}
. !
‘- Cdy=§[CJ_1+6Cj+CJ+1]
.\‘;0
. 1
{C} =§{C1+1"Cj-1)

: /

where for discussion purposes it is assumed that I;=1.

For Ar timesteps of equation (18) small, a linear
polynomial function approximation may be used for the
time curves between timesteps (k,k + 1) where {(k + 1) is the
timestep to be evaluated, thus

C kAt +5)= ((‘*A*)( )+(C‘“ by

kAt <r<(k+ DAL 20

de=dst

Combining equations {19) and (20), the spatial gradient
approximation during the time-step At as a function of
time is:

ac | . 1

;a; f =(C2, = CLy = CH o CHglAL+(CLy , — O

aC 1 2 1 2 i L 1

e ’ =(C}—C}—Ci_,+ Cj_ eflae+{CH - CL_ )i
¥=0

0<e <At J
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where superscripts 1 and 2 refer to timesteps kA and
(k +1)At, respectively. Combining equations (18), {19),
{20} and (21} gives a type of subdomain integration model
incorporating the expansion of the non-linear terms D(C)
and U(C) over the timestep Ar:

ar
£ D(i] e :+1
Z*U_—)J {(Cﬂ-l Cla—Ci-Cj ) ar T

<o
0

0y, & DYy=0)
e

T
a*l

{(cj CH-CL, +CL 1){A—+(V‘ el )’;}

O e £

/
=§[Cfﬂ+6cl+€2”] [C}_1+6C} +CH 1+

mu(u ___[) Ej+l

Utty=) {qﬂ (G Ch e

1 (&) |+1
MU (3; 9 {Cl L~ LY }ds (22)

i=0 :

Carrying out the indicated integration in equation (22)
gives:

D“'(y* hay !
e T

D(nU 0)(AI)‘+1
R

Dély=0 (A
[CM‘C;]E T

D(u(y 0) (AI)' +1
L_ 1 BT A T RV PRI
[C}-CL. 1]; W {i+ D(i+2) (23)

! I .
=2l +6CT+C3, ] Ch +6CH+CL 1+

lcz & U“'(y—-f)(AI)‘Jrl
PR R ()

Uy = AT
#5Ch Zc. i+2)

% Uiy = QYA ! 1C1 o Uty =0xan™*

lea g U =ONAT 1
27705 Mi+2) 27705 {i+2)

In a different notation, equation (23) can be rewritten as:

5:fcjz+1 _Cf]“ﬁo[C}z—CJz'— J- UICJZ+I +5 Uoc2
! !
E[CJ&1 +6CT+ClLy]=—¢[Ci +6C;+CJi ]
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D[C}, ~Cl1+DolC] - ]+ qu+l IUOCJ!_l
(24)
where
= 2 DUy=aangT! )
D‘: —_—— =
i
i 0 D(i'(y=i){AI)i+l
D)=y T — """ =
e T
U”( ](A ]'+1 ? (25)
- & U%y=iKAr) \
U=y — " i=
T T L
A QUM y=A)AgTt
Ul—i:nw—,ﬂ—o,l

/

For the advective and diffusivity parameters constant in
Q, and for a linear polynomial trial function
approximation of solute concentration between nodal
points with respect to both space and time, equation (24)
reduces to:

[CJ.,,l =20+ +C =20+ G -
UO 2 1
—2—[(Cj+1 T2HCHL, —C 2] {26)

- [(cz L H6C2+C2)/B—(C)_, +6C +CL. /8]

Pinder and Gray'® develop a finite difference and
Galerkin finite element numerical analog for equation (1)
in order to compare relative numerical efficiency between
these two common modelling approaches. The finite
element, hnite difference, and subdomain integration
formulation of equation (26) can be represented by a
single modelling statement for a Crank-Nicolson time
advancement approximation:

[cm 202+ € +CL, ~2C +CL ]~

v
Tﬂ (CJZ'+1‘_CJ;-1)/2+(C}+1 _C_,}wj:):”z} (27)

= 3Atn+ 1) 1){[C2 VHF2CEH CE -6 +20CH+ €Ly ])
where in equation (27} the finite element, subdomain
integration, and finite difference methods are determined
by y =(2,3,00) respectively. Equation (27) can be written in
an element matrix system:

Do 1 -1 ¢ +U2ﬁi -1l ¢
-1 LG b 211 —1]||€4

8C, /6t }

_ b n
C2An+ 1)[1 n] [6C; . 1/0t 28)
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where the so-called capacitance matrix (time derivative
component) contains all #-term information similar to the
soil-water diffusivity model matrix system determined in
Hromadka and Guymon®. For a Crank-Nicolson time
advancement approximation equation (28) may be

written as:
(P +%s){c2} (Pm%'s){c 29)

where {C*} are the element nodal points at timestep &, and

_ D1 1] U1 -1

5=3 [—1 1 ] 3‘[1 —1} (0
_ a1
”‘zm‘r}[: rJ By

LINEAR MODEL OF HIGHER ORDER SHAPE
FUNCTION (NODAL DOMAIN INTEGRATION
MODEL)

Hromadka and Guymon® examined two methods of
approximating a higher order or more complex family of
trial functions by a linear polynomial trial function
approximation. One method used the Alternation
theorum in order to determine an ‘optimum’ linear
polynomial estimate of a higher order approximator, A
second approach was the definition of an element matrix
system that approximated the integration and gradients
of a higher order approximator C of C within each nodal
domain, £, This second approach is reviewed in the
following, and another technique of determining n as a
function of time examined in a following section. A
constant diffusivity diffusion process (without advection)
is used for model development purposes.

Let C be an approximation function of a higher order
approximation C of C, where the spatial gradients of C on
T'; are defined by:

{Ep E(C;ﬂ“cj)__(cj“‘cj—ﬂ (32)
{

ax {
T.

i

A spatial gradient adjustment function e(x,r) is defined by:

oC /6C
O<e< o
elx, f)_ ax ) ox’ (33)
1; otherwise
Therefore, 1t is assumed that:
éC _ac
D eDE(— 34
where
6C i aC
{5 {5
T; E,
On I';, define
el = Alt); kAr<r<sik+ DAz (36)

such that:

o

A(kAt+)= Y Am(km}’:_'; 0<e<AL (37)

where (i) represents the ith order temporal partial
differential operator. Then

%)

A function #(t) is defined by

|
{ ¥ A“’(km}—'a } ) (38)
T,

r

]

J'Cdx 2[nmu[q 200+ Cht) (39)

o]

il

where
nit)# —1 (40)

The vaiue of 3 in equation {40j corresponds to a first order
polynomial C function subdomain approximation for C,
whereas #(t} =2 corresponds to a Galerkin finite element
meodel, and #(t)= oo determines a finite difference model.

The C approximator is also defined to have the
property:

JC dxzjf‘ dx, nir)+ "1 (41)

Q ]

] il

For a diffusion process without advection, Uy=0 in
equation {1). Therefore, substituting equations (38) and
{41} into equation (18) gives the modelling statement (for
U,=0)

£acy | {C;-, +2CutkAt+ A+ €0
i) N | i~} J+1
JA{;EUA (kAI } | de= 2[’7(](151‘ +Af)+1]

T,

At

G +2C kA + C, ]

kA +1] (42)
where
kA +ej= Y q“‘)(kmﬁ;; 0<e<Ar 43)
i=0 :

Analogous to the development leading to equations (24)
and {25):

o a C)(Ar)a+1
Ala)= zzo Ni+2)
A={0,]) (44)
1 & ALEAN !
A= L~y

The nodal domain integration element matrix system
similar to equation (29) is written as:
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(p+92f§>{c=}={p_%‘.g}{cl} (45)

where,

- y (46)
- Pl
PEmmroln

LA
TP N )
where 7= kAL + At), i =nlkAt).

APPLICATION OF LINEAR MODEL

The approach to be used for determining a higher order
approximation C of C in £2 is to determine C as a function
of ¢C/Ct spatially distributed within each ;. The problem
of a one-dimensional diffusion process with constant
parameters where the solute concentration is initially C,
and the concentration is decreased in stepwise fashion to
C, at both ends of the one-dimensional domain Q is used
in order to compare previous modelling results® to the
proposed approach. The diffusion problem can be
normalized as:

eiC ec
—a—x—z—cT_r-, XEQ {47)

where
Q={xj0<x<t)

Clxt=0)=1, xe2 (48)
Clx=0,1y>0)=0

The problem domain Q is assumed discretized into two
finite elements (€,,Q,} of equal length by three nodal
points (C,,C,,C;) where (x,.x;,x;)=(0,0.5,1). Owing to
the boundary conditions of equation {48), the resulting
system of modelled linear equations reduces to a single
equation of one unknown, C,. In order to evaluate the
effectiveness of the proposed numerical approach to
modelling equations {47} and (48), the Galerkin finite
¢lement, finite difference, subdomain, and nodal domain
integration solutions will also be presented for
COmparison purposes.

For the study problem of equations (47) and (48), the
considered domain numerical solutions result in the
expression®:

lim C,(f) = exp[ - 3(111):} 120 (49)
Ar—0 n

where # is the entry in the capacitance matrix P(#) of
equation (31). .

Within ©,, an approximation € of C can be determined
from equation (47) by integrating twice (with respect 1o x)

14 Adv. Water Resources, 1982, Volume 5, March

the time derivative of C. Thus, for some instant in time tos
it may be assumed in £2,:

éC . 2
‘g(x,[= [0): C2 =

™

(93]

ox? (50)

where €, is a finite difference estimate of the time
derivative of C at the variable nodal point. Integrating
equation {50) with respect to space gives for Q;:

Syias

xt=rp)=Cox+a (51)

A finite difference estimate of ¢C/éx at node 2 determines
the value . Integrating a second time,

N 1 I.
C(x,:=f0)=§(f2x2 _§C2x+ B (52)
Evaluating equation (32) for C, gives in £,
- L. f , i
C{x,t=t0)=§C2 X —x+a~ +C, (53

For the approximation € of Cin Q, given in equation (33},

e ¢
Jc ax=12+ S (54)

0,

From equations (45) and (46), for e=1, the modelling
statement similar to equation (49) is:

are, ¢, .
Gl L2l 4
a[wz* 2} €2

Co(t)=(—0.1123T)e " 8719181 4 (1.11237)e "B-#082 1.0
(53)

Table 1 gives a comparison of the analytical solution to
equations (47) and (48) to the considered domain
solutions of 49 (for =2,3,00) and the proposed model of
equation (55). From Table 1, a significant increase in
accuracy Is provided by the proposed modelling

Tuble 1. Numerical solution of normalized diffusion problemione variable
nodel point)

Analytic
Time n=2* n=3 n=c0} Linear model** solution
0.01 0.887 0.889 0.923 0.972 0.999
0.02 0.787 0.808 0.852 0.513 0.975
003 0.698 0.726 0.787 0.846 0918
0.04 a.619 0.653 0,726 0.779 0.846
6.05 0.549 0.587 0.670 0.715 0.772
0.10 0.301 0.344 0.449 0.461 0474
0.135 0.165 0.202 0.301 0.297 0.2%0
0.20 0.091 0.118 0.202 0.19t 0.171
0.25 0.050 0.06% 0.135 0.123 0.108
030 0.027 0.041 0.091 0.080 0.066

* (alerkin finite element method

t Subdomain model
1 Finite difference model
**  Nodal domain integration model

TS TR v
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Figure 1. Typical mean relative error from numerical

model of diffusion-dominated process (Dg = 1.0: U, =0.05)

approach. As another example, a second order
polynomial estimate of C,(x,t =t} is possible using the
information provided at all three nodes. Thus in (2,

&3¢

Cuxt=1g)= I —4x2C, +4xC, (56)

&x?

Similar to equations (50)}-{55), for xe(2,

Cioxt=19)= ( —162)[;(4 —-2x3+x "'1‘56}" C, {57
giving

C,={—0.1086)e ™ 5575 4. (1.1086)e " 5796 1 >0
(58)

Comparison of equations (55) and (58) shows that little
advantage is gained by the extra computational effort in a
higher order estimate of € in Q, by the proposed
technique.

APPLICATION TO ADVECTIVE-DIFFUSION
PROBLEM

The advection—diffusion element matrix system statement
of equation (29) is a function of the element capacitance
matrix diagonal entry, #. For constant parameters, the
following problem was analysed in order to evaluate the
sensitivity of equation (29) to variations of :

#C 8 _C
Do~ Uoz =25 x<Q (59

with initial and boundary conditions
Cixt=0)=0; xe2
Cllr>0)=1
(60}
Cloe,r2z0)=0
Q: [xIx =0
For a linear trial function approximation of the state

variable € with respect to time, the numerical analog
reduces to the Crank-Nicolson time advancement

approximation. Diffusivity {D,) was set to 1.0 whereas the
parameter U, was varied from 0.0 to 10.0. More than 200
separate simulations were made in order to evaluate # as a
function of uniform element size Ax, timestep size Af, and
advective parameter Uy, Results of this sensitivity study
indicates that with respect to relative error, the use of a
constant n value throughout the simulation {eg gy
=2,3,c0} provides varying qualities of accuracy {Fig. 1).
That is, for each assumed constant y-value, the resulting
numerical analog produced good results depending where
in time and space the model solution is examined for error.
It was noted, however, that for the smaller U/, values
tested, better results were obtained for small 5 values (4
=2,3), whereas for large U, values, large  values (= w)
produced better results. Additionally, it is noted that these
determinations are based on a specific advection—
diffusion problem; another class of problems may produce
different conclusions of modelling trends such as found in
Hromadka and Guymon® where n was found to be
somewhat dependent on the spatial gradient of the
problem’s solution profile. From the above, varyingn asa
function of time (and between elements) is suggested. Two
methods of determining values of n(r) are given in
Hromadka and Guymon® where the approach used is to
determine a linear polynomial tria] function
approximation of a higher order or more complex family
of state variable approximation functions. A third
approach in determining n(r} is given in the previous
section where a strict diffusion process is modelled.

CONCLUSIONS

A method of modelling a higher order trial function
approximation of advection—diffusion by an improved
linear trial function approximation set has been
developed. This method retains the smaller symmetric
matrix system associated tc numerical models of
advection—diffusion based on a linear polynomial trial
function, but increase the numerical accuracy of the model
by incorporating some of the benefits of a higher order
approximation.

Since similarities between the various considered
numerical methods (finite difference, Galerkin finite
element, subdomain integration) are used in the proposed
model, it is concluded that the proposed numerical
approach may lead to a generalized modelling method for
many classes of advection—diffusion problems. The
computer code used for each simulation is identical except
for a variation in the capacitance diagonal entry, s
Therefore, a comparison of numerical efficiency between
the finite difference, Galerkin finite element, subdomain
integration, and the proposed variable n term (nodal
domain integration) approach is provided by the results
obtained herein.

ACKNOWLEDGEMENT

This research was supported by the US Army Research
Office (Grant No. DAAG29-79-C-0080).

REFERENCES

1 Desai, C. S. Elementary Finite Element Methods, Prentice-Hall,
Englewood Cliffs, 1979

2 Cheney, E. W. Introduction to Approximation Theory. McGraw-
Hill, New York, 1966

3 Guymon, G. L. and Luthin, J. N. A coupled heat and moisture

Adyp. Water Resources, 1982, Volume 5, March 15



transport model for artic soils, Water Resourc. Res. 1974, 10, (5),
895

Hayhoe. H. N. Study of relative efficiency of finite difference and
Galerkin technigues for modeling soil-water iransfer, Water
Resourc. Res. 1978, 141), 97

Hromadka IL. T. V. and Guymon, G. L. Some effects of
linearizing the unsaturated soil-moisture transfer diffusion
model, Water Resourc. Res. 1980, 16, 643

Hromadka II. T. V. and Guymon, G. L. Numerical mass balance
for soil-moisture transfer problems, Adr. Water Resourc, 1980, 3,
107

16 Adv. Water Resources, 1982, Volume 5, March

7

Nodal domain integration model: T. V. Hromadka I1 and G. L. Guymon

Hromadka I, T. V. and Guymon, G. L. A note on time
integration of unsasurated soil moisture transport, Ady. Water
Resoure, 1980, 3, 181

Hromadka 11, T. V. and Guymon, G. L. Improved linear shape
function model of soil moisture transport, Water Resourc, Res.
1981, 17, 504

Philip, J. R. and Knight, J. H. On solving the unsasurated flow
equation: 3, New quasi-analytic technique. Sail Sci. 1974, 117, 1
Pinder, G. F. and Gray, W. G. Finite Element Simulation in
Surfuce and Subsurface Hydrology, Academic Press, New York,
1977

oyt



