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ABSTRACT

A deterministic model of frost heave based upon
simultaneous analysis of coupled heat and moisture
transport is cascaded with a probabilistic model of
parameter varigtions. The multiparameter, deter-
ministic model is based upon submodels of moisture
transport, heat transport, and lumped isothermal
Jfreezing processes. The probabilistic model is based
upon Rosenblueth’s method which only requires
knowledge of parameter means and their coefficients
of variation. The deterministic model is relatively
insensitive to thermal parameter variations because
the phase change process dominates the thermal
regime of a freezing moist soil. The model is sensitive
to hydraulic parameters which control the rate
mobile liquid water is drawn into the freezing soil
region. Four hydraulic parameters were varied within
reported and assumed levels of parameter variation
for two soils; a frost-susceptible silt and a marginally
frost-susceptible dirty gravel for which laboratory
data on parameters and frost heave were available.
The resulting frost heave varigtions were fit to a beta
distribution and corfidence limits of at least 95%
were predicted within two sigma bounds. The coeffi-
cient of variation of unfrozen hydraulic conductivity
primarily determines the coefficient of variation of

simulated frost heave. Comparison of these results
with two detailed field cases indicates a close com-
parison with beta distribution parameters.

INTRODUCTION

Attemnpts to develop mathematical models of frost
heave have centered on continuum-deterministic
approaches which are sometimes referred to as con-
ceptual or physics based approaches. Guymon et al.
(1980) and Hopke (1980) review these efforts.
Generally, mathematical models have included simul-
taneous heat and moisture transport in a one-dimen-
sional column. While there is almost total agreement
that these two processes must somehow be included
in any model of frost heave, there is considerable
uncertainty and disagreement on the ice segregation
processes itself. The processes occurring in the
freezing zone are, unfortunately, poorty understood.
There also are somewliat divergent objectives in devel-
oping these models as explicitly or imiplicitly viewed
by the varicus authors, and these differences in objec-
tives have led to differences in approaches. One
purpose of this paper is to present a more systematic
basis for viewing or judging the frost heave modeling
exercise.

0165-232X/81/0000-0000/302.50 ©1981 Elsevier Scientific Publishing Company



128

Guymon et al. (1981) have questioned the funda-
mental concept of using deterministic models because
of uncertainty concerning model parameters and
modeling concepts of the ice segregation process.
They suggest that probabilistic concepts should be
coupled with deterministic approaches.

Chamberlain (1980) has recently conducted
compiehensive studies of field frost heave for a small
section of roadway in Hanover, NH, with sandy silts
as the base material. The variations of frost heave
were carefully measured at 455 discrete points and
were fitted to a beta-probability distribution, sug-
gesting that frost heave can be evaluated as a
probabilistic process. Chamberlain observed a coefTi-
cient of variation of about 72% and a maximum and
minimum frost heave of about 3 and 2 standard
deviations, respectively. The maximum mean frost
heave he observed was 4.2 cm and frost penetra-
tion was 90 cm. Numercus “undisturbed” sam-
ples collected at this site for determining hydraulic
parameters should be useful in defining the sta-
tistical properties of these parameters which may
in turn be related to the observed frost heave varia-
tions. We have made similar measurements at 39
discrete points on a taxiway at the Albany County
Airport in Albany, NY. A maximum mean heave
of 1.65 cm was observed on 11 February 1980
when frost had penetrated less than 50 ¢m into the
silty-sand sub-base material. A maximum 130% coef-
ficient of variation [or heave was obtained. Ob-
served maximurn and minimum heave values 3.35 cm
and 0.9 cm are equivalent to approximately plus and
minus two standard deviations. Cores of frozen
ground where ice lensing has occurred also suggest a
process exhibiting random features. Ice lenses will
occur in a seemingly random pattern in a core only
a few cm in diameter. Analysis of such a “one-
dimensional” core uniformly frozen so that there
would be a generally uniform distribution of ice,
indicated little relation between the frequency of ice
lenses along three vertical transects taken 4 cm apart.
Ice lenses were on the order of 0.4 mm thick. An ice
lens might occur on one horizontal transect and just
4 ¢m horizontally to the right or left no ice lens was
visible.

A ceniral objective of this paper is 1o develop a
probabilistic concept of frost heave which includes
the usual deterministic approaches but recognizes the

inherent discrete nature of porous media. To do this,
a new propabiiistic approach will be presented which
avoids the commonly used and sometimes expensive
Monte Carlo method. Although a particular math-
ematical model will be used (Guymon et al., 1980)
to develop a probabilistic-deterministic model, the
theory developed here is generally applicable to deter-
ministic models proposed by others.

SYSTEMS CONCEPTS

Figure 1 is an approach to viewing the modeling
process. The prototype system § (c.g. a laboratory
soil column) is subject to excitations, x (or inputs)
which are spatially and temporarily distributed.
Spatially and temporally distributed outputs are
observed. Inputs or boundary conditions may be
subfreezing temperatures, water table location, and
surface surcharge (overburden). Outputs may be frost
heave, y, or soil pore pressure, temperatures, or ice
content. Because it is usnally impossible to measure
x exactly, subsystem X indicates a model process to
determine an index, x’, of x which has some error.
In our case we are generally lumping x in space but
are preserving, to the extent possible, any low-fre-
quency dynamic characteristics of x. Since our deter-
ministic model M is based upon the continuum as-
sumption, certain parameters arise in the model
derivation which purport to characterize S (e.g.
thermal conductivity or hydraulic conductivity).
Subsystem P indicates this modsling or sampling pro-
cess which yields imperfectly known parameters, p;.
Model outputs, p’, will therefore be imprecise but
may be compared to imperfect observations of y for
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Fig. ). A schematic of the modeling process showing
modeling uncertainty.



some bounded time period to determine model uncer-
tainty, €(t), where

e(t) = (1) —»(1) n

We are considering ¥ as lumped in order to make this
computation. Modeling uncertainty is arbitrarily
grouped into four general areas:

1. Errors @, due to the choice of M which
includes the choice of a numerical analog.

2. Errors &, due to spatial and temporal discreti-
zation and averaging.

3. Errors @3 due to boundary conditions (i.e.
choice of X) and due 1o choice of initial condi-
tions.

4. Errors @4 due to the selection of p;; i.e. choice
of P,

The total model uncertainty is some function of the o;
eITors

G(f) = e(al:a‘baha‘l) (2)

where the o; errors may be interrelated and e may be
non-stationary. Because of approximations necessar-
ily incorporated in the model there will obviously be
some error or unceriainty in model predictions.
Furthermore, the complex and nonlinear nature of
the model requires comparison to prototype siiua-
tions to evaluate its precision.

An Investipation of errors associated with the
choice of numerical methods (e.g. finite difference
and finite element methods) and spatial and temporal
discretization is the subject of a future paper. Bound-
ary condition effects will also be investigated in a
future paper.

The major thrust of this paper will concentrate on
parameter errors associated with an assumed uniform
soil profile. It is well known (Harr, 1977; Nielsen et
al., 1973; Warrick and Nielson, 1980) that consider-
able variation is observed in field soils that are within
a small geographical area and may be generally classed
as the same soil. Moreover, most field soil profiles
are layered (non-uniform) although they are often
simplified to an “average” uniform soil profile for
analysis. This usually unknown variability coupled
with sampling and measuring errors is significant.
Frost heave is an ideal process to study by probabil-
istic methods since it is sensitive to minor variations
in soil properties and environmental conditions.
Moreover, frost heave or ice segregation processes
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effectively integrate all hydraulic, thermal and chem-
ical processes taking place in a finite column of soil
so that by measuring one output, frost heave, all
other processes are indirectly sampled. Frost penetra-
tion depths can also be accurately measured and they
provide some indication of parameter variability
effects.

BRIEF REVIEW OF DETERMINISTIC MODEL

Guymon et al. (1981) describe the deterministic
model, and these details will not be repeated here.
Only a general summary of the model will be
presented.

The model is applicable to a saturated or unsat-
urated, one-dimensional, vertical, soil column which
is subjected to time-dependent variations in upper
and lower boundary temperature and pore water
pressure conditions. The upper boundary condition
is assumed to be a no-moisture flux condition if the
soil surface is frozen. Additionally, a surface sur-
charge or overburden condition is accommodated by
the model. Major assumptions employed in the model
are:

1. Unsaturated moisture flow theory applies and
Darcy’s law is valid in the unfrozen zone and
the freezing fringe.

2. Moisture movement is by liquid films driven by
the total hydraulic head energy gradient.

3. Moisture movement in frozen zones is negli-
gable.

4.The well known heat equation, including a
sensible heat advection term, applies to the
entire soil profile.

5. The unfrozen zone is nondeformable and the
frozen zone is only deformable due to ice lens
growth.

6. The fluid sink due to freezing and the latent
heat process may be decoupled into an iso-
thermal approach (i.e. a heat balance process).

7. Ice segregation occurs when moisture drawn
into the freezing zone exceeds the soil porosity
minus an unfrozen water content factor, cor-
rected for volumetric ice expansion.

8. Hysieresis is not present and all functions are
single valued and piece-wise continuous.

9. Overburden and surcharge effects are included
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by adding these pressures to pore water pres-
sures at ice segregation fronts only.

10, Sali transport effects are negligible; ie. the
freezing point depression of soil water is con-
stant, and the unfrozen moisture content at a
given temperature is constant.

11. Constant parameters are invariant with respect
to time; i.e. they do not change in response to
freeze—-thaw cycles.

The model is based upon simultaneous solution of
partial differential equations of heat and moisture
flux in the unfrozen zone wherein it is assumed un-
saturated flow is modeled by unsaturated flow
theory

d{Ku(dolox)) _ 36y oy 96

3
dx ar  p Bt 3

and the well known sensible heat conduction--
advection equation

3 |Kr(37/0x)] -—vaﬁz - ar —Laf—‘—v?ﬁ@)
Jx bied ar o 01

where

x = positive coordinate downward

t = time .

¢ = total head = Y — x (where Y = pore pres-

sure head)
8, = volumetric unfrozen water content
8; = volumetric ice content

Py,0; = density of water and ice respectively
Ky = K(¥) = hydravlic conductivity
T = temperature
K¢ = thermal conductivity of soil-water—ice
mixtare
L, = volumetric latent heat of fusion for bulk
water
Cw = volumeiric heat capacity of water
Cm = volumetric heat capacity of soil -water—ice
mixture
The moisture sink and latent heat components of
eqns, (3) and (4} are decoupled and are solved using
an isothermal approximation (Hromadka et al,
1981). These components only exist in freezing or
thawing zones of the sail profile.
Figure 2 illustrates the computation process at a
specific time level. An averburden pressure (as head
of water), ¥, is shown. Also the unfrozen water
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Fig. 2. Mustration of deterministic model results at a given
time level (from Guymen et al., 1981).

conitent factor, @, and soil porosity, 8, are shown.
The primary variables ¢ and T are computed from
eqns. (3) and (4) and the secondary variables 8, 84,
and f; (segregated ice) are computed. From this
fatter quantity, lumped heave is computed as shown
in Fig. 2.

TABLE 1

Soil parameters required for the deterministic odel

Parameter  Description

n, Aw Characterize soil water versns pore pressure
relationship for unfrozen soil

K{y) Unfrozen hydraulic conductivity versas pore
pressure refationship

£ Parameter to correct K(p} for ice in freezing
zone (as function of 8;, ice content)

& Parasity

ey Unfrozen water content factor

Cy Volumetric heat capacity of soil

K Thermal conductivity of soil

ng Soil density

Ty Freezing point depression of soil water



Numerical solution is by the nodal domain integra-
tion method (Hromadka and Guyman, 1981) which
requires a spatial discretization of the order of I cm.
The time domain solution is by the Crank—Nicolson
method which requires temporal discretization on the
order of 0.5 h and a parameter update frequency on
the order of 1.0 h. Equations are temporarily de-
coupled during discrete time periods and parameters
are assumed constant within each discrete spatial
solution domain.

The model is a multiparameter model and is highly
nonlinear. Table 1 lists the soil parameters required
by the model. The heat and fluid transport processes
are coupled through the latent heat process and the
parameters that must be employed in the derivations
of eqns. (3) and (4). Fortunately, soil systems are
usually highly damped, permitting reasonable approx-
imations without employing costly iteration tech-
niques. The model is efficient and can be solved on
the miniclass computers using FORTRAN IV
language.

PROBABILITY MODEL

Freeze (1975) and others have investigated the
combination of stochastic and deterministic models.
In particular, Freeze considered the problem of
groundwater flow in a non-uniform one-dimensional
homogeneous medium. On the basis of his study,
Freeze had “doubts about the presumed accuracy
of the deterministic conceptual models that are so
widely used in groundwater hydrology.” If he had
doubts about a similar but simpler system, we must
confess considerable pessimism about deterministic
models of the more complex ice segregation proces-
ses. Only a few parameters were of concern to Freeze
(1975), but we are considering the 10 parameters
shown in Table 1. Values of the heat capacity,
thermal conductivity, density and latent heat
capacity of water and ice were obtained from
standard tables.

Freeze’s (1975) stochastic analysis was based upon
the well known Monte Carlo technique (Harr, 1977)
which requires an assumption of the statistical
distribution of the stochastic variables. Freeze
assumed porosity was normally distsibuted and
saturated hydraulic conductivity was log-normally
distributed, and used 500 Monte Carlo runs for each
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parameter. Values were randomly generated from an
assumed probability distribution and were applied to
a deterministic model, Typically, most investigations
of this nature use a large number of runs, i.e. 500 or
more. Because of the apparent need for many Monte
Carlo runs, this type of stochastic analysis can be’
expensive, particularly if the variance is non-
stationary for the type of dynamic problems being
considered and if the variance should be significantly
different for different soil types.

An alternative approach to the Monte Carlo
method is proposed that is based upon Rosenblueth’s
(1973) method, but because this method is not wide-
ly known in the open literature, a heuristic deriva-
tion of the method will be presented for the case
of one random variable. Suppose

y = fx) ()

where f(x) is an arbitrary, continuously differentiable
frequency distribution of the random variable x. The
usual procedure for determining the expectance or
mean and the second moment or variance of y is
to expand y around X (the mean of x) using a
Taylor’s series (Harr, 1977).

Alternatively, one may use Rosenblueth’s method
which is analogous to determining the required simple
support forces for a statically stable weightless beam
with an arbitrary load (Fig. 3). Now suppose f(x) has
been normalized so that the total load equals unity,
ie.

1= [ fl)dx (6)

ct'—-ah

fix)

Beam -

y- Yy

Fig. 3. Schematic illustrating Rosenblueth’s method.
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Also, suppose the mean value of x and its coefficient
of variation are known for N discrete values of x,
where these statistical properties are defined in the
usual manner

= - ]' N
Exy=Xx = ;zo;x,- (7a)

Vx= EGxH ~{EG)}? =

y N 3
— (x; —x)* (70
vz

where Vy is the variance of x. The coefficient of
variafion is given by

CV = S/x 3

where Sy is the standard deviation and is equal to the
positive square root of the variance. Adopting the
notation

Ye = f&"'Sx)
o = flx—8x),

static equilibrium of the beam shown in Fig. 3 will
be achieved if

&)

Lty
y=22 (108)
2
and
)’+—}’—'
= ) 10b
Sy { 2 ‘ (10b)

This can be heuristically proven by noting that
F{x) can be expanded in Taylor’s series (Harr, 1977)
and the mean and variance calculated by

Vo oyt 3T ) SE (11a)
S3 = [F'&x))2s; (11b)

The validity of eqns. (102) and {(10b) can be demon-
strated by assuming any arbitrary differentiable func-
tion f(x), using eqn. 9 in eqns. (102) and (10b), and

showing-the result equal to eqns. (112) and (116)."

‘The " simulated frost heave, y', is a function of
many parameters, p; including the input conditions
o
x',ie.

yr = f(ﬂ::pz, ~"’pﬂ’h.x?) ] (12)

where for the moment it is assumed the p; are uncor-
related. Similar to the heuristic proof above for one
vatiate, Rosenblueth deduced the general relationship

1
E[pY] = P (e L R A

oGl ™M (13)

where there are m parameters to be considered, and
N is the exponent (moment) of ¥'. The notation
3w .m indicates the use of all sign permutations of

y’ :f@lisp‘sﬁ2‘tspz>"‘ap_miSpm) (14)

where p; is the mean of the jth parameter and Sp, ; is
the standard deviation of the parameter. The sub-
script sign is determined by the sign of S,. The mean
and variance of ¥’ are computed in the usual fashion

y' = EQ) (15)
Vy = E{rY1-[£0)]. {16)

Now suppose some or all of the p; are correlated,
Rosenblueth’s method can be extended using the
covariance (cov) statistic |Harr {1977)] as follows:

cov(pg, Pr)
SPg Sph

a7

Pe.ht = Prg =

where p is the covariance measure and the subscripts
denote there are m random variables (parameters)
that are correlated a pair at a time. Define a g-func-
tion such that there will be M of these functions piven
by

M teh)
di...m = 1% 2 — 'Sg,h Pg,h (18)
g-1 &h
h=)
40, lg1= k]
:h -
& 1, lg| <k

where the ij...m are all the permutations of the
signs of the standard deviation of each parameter
where each sign is attached to the subscript. The
moments of y' are defined as

- ..
Elp™) = 7 @i, )y )™ (19)



and the first and second moments are computed as in
eqns. (15) and (16). Equation (19) reduces to eqn.
(13) in the event all p are zero (ie. the p; are all un-
correlated and g = 1).

Rosenblueth’s method is a powerful tool that is
ideally suited to the type of problem being con-
sidered. No prior assumptions are required concerning
the probability distribution of the parameter
varigbles. Only an estimate of parameter mean and
coefficient of variation are necessary. This method
requires only that the functional relationship between
' and x' need be specified, ie. the deterministic
model. The methed is general, however, and is appli-
cable to any deterministic model. Instead of the
many costly simulations required by the commonly
employed Monte Carlo method, only 2™ simulations
are required using the present modification of Rosen-
blueth’s method.

Given a measure of parameter variability the first
and second moments of predicted frost heave canbe
readily computed, giving useful statistical information
to establish a range of possible frost heave rather than
a single deterministic value. While higher moments
can be obtained to give some indication of skewness
and peakedness, this information is not of great sig-
nificance to the present objective.

The capability of extending knowledge by sup-
posing we know nothing about the distribution of
frost heave follows from Chebeshev’s inequality

— 1
PE?—hSyéyéy+hSy]>1—E;-: 20)

For example, if two standard deviations are used
(h=2), the probability that y is bounded by * AS) is
greater than or equal to 75%. Now if it is assumed y is
symmetrically distributed, Gauss’ inequality may be
applied

_ 4
Pl ~hSy <y <y +hSy) =1~ s (21)

which says for k=2 there is a greater or equal
probability of 89% that y is so bounded. Finally,

given additional information the distribution of »
can be further narrowed. A versatile distribution to
assume is the beta distribution (Harr, 1977):

@l B! (b —a)® B g
= T (y-a) (b 22
) @B (y—a)*(b—y) (22)
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where to find the o and § parameters one needs to
know ¥, S8}, and ¢ and &, the lower and upper bounds
of the distribution. The parameters ¥ and S, are
generated by Rosenblueth’s method. The ¢ and b
parameters may be estimated by data such as
Chamberlain (1980) has developed. He found that
a =y —2S, and b =y + 38, for one field study.
Once a beta distribution is determined, confidence
limits and other desired statistical properties of
() can be established (Harr, 1977).

Questions yet to be resolved include the question
of stationarity, or in other words, how will the
statistical properties of f(y) vary with time? The
second question conceéins the nature of fiy) for
various soils. Can a single beta-distribution be found
that is applicable to a class of scils, such as the so-
called “frost-susceptible soils”?

APPLICATION OF MODEL

The model was applied to a set of laboratory
data obtained from a vertical soil column equipped
with temperature and water level control and instru.
mentation to measure soil temperatures and pore
water pressures (described by Berg et al., 1980,
Ingersoll and Berg, 1981). Two different uniform
soils were placed in the column to obtain comparison
data: a well known frost susceptible soil, Fairbanks
silt, and a weakly frost-susceptible dirty gravel, West
Lebanon gravel. Guymon et al. (1981) reported on
comparisons of simulated frost heave and measured
laboratory frost heave for both restrained and un-
restrained cases using Fairhanks silt among other
soils.

The simulation procedure consists of determining
hydraulic parameters using remolded samples of the
same soil employed in the frost heave column.
Porosity and density are determined using standard
techniques. A modified Tempe cell, as described by
Ingersoll and Berg (1981), was used to determine the
soil characteristic drying curve and the unsaturated
hydraulic conductivity relationship. An average char-
acteristic curve of two tests on Fairbanks silt is shown
in Fig. 4 together with the parameters used to
describe this curve in the model where

- e (23)
Awlyi®+1 7

0y
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Fig. 4. Soil-water characteristic for Faitbanks silt (average of
two tests),

These parameters fit the actual curve with less than a
£0.03 error. Unfrozen hydraulic conductivity versus
pore water pressure, K (), for a sample of Fairbanks
silt during a drying cycle, is shown in Fig. 5. The
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Fig. 5. Unfrozen hydraulic conductivity for Fairbanks silt
(solid line derived for modified tempe cell, broken line
derived from volumetric pressure plate extractor).

solid line fits data obtained from the modified Tempe
cell and the broken line fits data obtained from a
volumetric pressure plate extractor. The deterministic
model uses unfrozen hydraulic conductivity dataas a
discrete table where intermediate values are deter-
mined by linear interpolation. The partly frozen soil
hydraulic conductivity correction factor, £, where

K(,0) = K(y) 10750 (24)

was determined by calibration such that a deter-
ministic simulation of frost heave closely approx-
imated measured frost heave in the laboratory
‘freezing column. Other parameters in Table I such as
the thermal parameters, were assumed. Table 2 lists
the parameters used in the “best”™ deterministic
gimulation of measured frost heave for both
Fairbanks silt and West Lebanon gravel. It is assumed
that these parameters represent the mean parameter
values for the soil in the laboratory freezing column.

Boundary and initial conditions applied to the
laboratory column were approximated as closely as
possible in the deterministic model simulations.
Because there is inherently some uncertainty con-
ceming boundary conditions, a precise simulation was
not expected or attempted.

TABLE 2

Mean soil pararneters used in model simulations

Parameter  Soil

Fairbanks silt W. Lebanon gravel

Ay 0.0004 &f 0.119 2

n 11adf 0.502

K(w=0)  04cmh 2,d 0.42 cm b~ &°

£ 8 20t

8 0.1502 0.082b

8, 04252 0272

Pg 1.6 a 1.99 2

T¢ oce o'ce

K 17cal em™°C h* % 17 calem™°C 7t ©
Cy 0.3calem3°C '€ Q3calem2°CtE

2Measured in laboratory.

Determined by model calibration.
€ Assumed.
dgee Fig. 5 for complete relationship.
©Complete relationship not shown herein,
fAwerage of two laboratory tests.



TABLE 3

135

Comparison of measured unrestrained and simulated frost heave varying soil parameters for Fairbanks silt (cm)

Day Measured Best Tr=—0005 082Ky 1.33¢ 13K 1.15 6 1.13 8, 11E
simulation

5 1.6 1.5 1.5 1.5 1.5 1.6 1.6 1.5 1.5
10 238 2.6 2.6 2.6 2.7 2.8 2.8 2.7 2.6
15 3.9 3.5 35 3.6 3.6 3.7 3.7 3.7 3.5
20 44 4.4 4.4 4.4 4.4 4.6 4.6 4.6 4.3
25 5.0 51 5.1 5.2 5.2 53 5.3 54 5.0
30 5% 5.7 5.8 5.9 5.8 6.0 6.0 6.1 5.7

Table 3 compares simulated and measured un-
restrained cumulative frost heave for the Fairbanks
silt case. To evaluate the effect of a single-parameter
variation while holding all other parameters at their
assumed mean value, seven additional simulations are
shown in Table 3. Although a substantial variation in
K shows some sensitivity, it was assumed that
thermaﬁ parameters would have a minor effect on
frost heave simulation results for Fairbanks silt under
the conditions of the laboratory tests. The reason for
this is that phase change processes overshadow
sensible heat processes in a freezing soil. Although
not shown, parameter variations for Fairbanks silt
have an insignificant effect on simulated frost
penetration which very closely approximated
measured frost penetration. Frost heave showed
marked sensitivity to hydraulic parameter variations.
Consequently, these parameters were selected for a
more detailed analysis using Rosenblueth’s method.
The most sensitive parameters are porosity, unfrozen
water content factor, and unfrozen hydraulic con-
ductivity.

Varying porosity within reasonable bounds affects
the results by modifying the mass accumulation term
in the moisture transport equation (3} by modifying
the available pore space in the soil for ice to develop
without ice segregation occurring, and by modifying
the soil—water characteristics (eqn. (23)). Varying
porosity can also account for hysteresis (Fig.4)
which is not considered in the deterministic model.
To include this phenomenon would necessitate the
incorporation of memory into the model, significant-
ly increasing the computation effort and probably
not markedly improving the computation precision or
certainty. Figure 4 shows a plus and minus 13.3%

variation effect on the characteristic curve. Numerous
measurements we have made on silts and similar soils
suggest that hysteresis effects would be adequately
bounded by such an approach. We believe there is
now no reasen to explicity include hysteresis in any
soil phenomena related model. This process can be
adequately dealt with by incorporation of a probabil-
istic model.

The so-called ‘“unfrozen water content factor”
controls the available space for pore ice to develop
before ice segregation occurs. In the deterministic
model, this parameter also determines the un-
restrained pore water pressure at the bottom of the
frozen zone (Fig.2), thereby determining the
hydraulic gradient and the rate water is drawn into
the freezing zone. The balance between the rate of
heat extraction and water importation to this zone is
the controlling factor in the ice segregation pro-
cesses as the deterministic model is conceived. For
this reason, the hydraulic conductivity of the soil
system is obviously an important, if not the most
significant, parameter, although it is difficult to
measure accurately for unsaturated fine-grained soils
and is subject to considerable uncertainty. Very little
work has been done on measuring hydraulic conduc-
tivity for partly frozen soils in the range of tempera-
tures found in field soils under winter conditions.

The “best” simulation rtesults for measured frost
heave of West Lehanon gravel are shown in Figs. 6
and 7. The laboratory results for a slightly restrained
soil (i.e. 0.5 1bffin® or 345 kPa surcharge) were used
for parameter calibration (see Table 2); the results are
shown in Fig. 6. A restrained (i.e. 5.0 1bf/in? or 34.5
kPa surcharge) laboratory case with identical boundary
conditions to the slightly restrained case was
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Cumaigtive Heave lem)

Time {days)

Frost Penetration {om)

N,

* N

Fig. 6. Observed and simulated frost heave and frost penetra-
tion for West Lebanon gravel with a 0.5 1bf/in® (3.45 kPa) sur-
charge.

simulated without adjusting parameters. As can be
seen from Fig. 7, the results are satisfaciory.

The effect of soll density variations was not
studied because this parameter has a minor effect on
overburden pressures for shallow freezing cases with

Simalated .

Cumulgtive Hegve (cm}
o
T

cbserved

Time {days}

Frost Feneirotion {om)

Fig. 7. Observed and simulated frost heave and frost penetra-
tion for West Lebanon gravel with a 5.0 1htfin? {34.5 kPa)
surcharge.

which we are concerned. Qbviously density variations
are highly important since porosity and the hydraulic
parameters are closely correlated to density.

Freeze (1975) reviews some references that deal
with porosity and hydraulic conductivity variations
and Harr {1977) reviews some of the available litera-
ture on these and other soil parameter statistics.
Warrick and Nielson (1980} review their own data as
well as those of others for soil density, water content,
particle size, and hydraulic conductivity variations.
Schultze (1972) obtained a coefficient of variation
for porosity of silt of 13.3% while Nielsen et al.
(1973) oblained an average coefficient of variation of
10.0% for a clay—loam soil. They also obtained a
coefficient of variation for the same soil for soil—-
water characteristics that ranged from 10% at low
tensions to about 24% at moderate tensions (ie.
200 cm of water), We know of no similar data for the
unfrozen water content factor; however, we assurme
a similar range of behavior as for porosity. A coeffi-
cient of varation of 15% is probably adequate to
describe most frost susceptible soils, Nielsen et al.
{1973} performed extensive analysis on the variability
of unsaturated hydraulic conductivity for clay—loam
sail. They repott a coefficient of variation that ranges
from 100 to 450% for field variations. Laboratory
measured variations for the same soil might be on the
lower end of this range (i.e. 100%). Very little work
has been done on determining partially frozen soil
hydraulic conductivity, let alone determining
measurement or sampling errors and field variability,
It is probably safe to assume considerably more
variability for frozen soii than for an unfrozen soil,
For lack of mote definitive date, we assume a coef-
ficient of variation of 500% for frozen soil hydraulic
conduciivity. If the E-factor varies by 10%, about a
500% coefficient of variation in frozen soil hydraulic
conductivity is obtained when we couple the E-
factor variation to the unfrozen hydraulic conductiv-
ity variation.

Although there may be some autocorrelation
between hydraulic parameters, the correlation coeffi-
cient was taken to be zero (ie. p = G, eqn. 17)).
Limited attempis to correlate parameiers showed a
very weak correlation between porosity and hydraulic
conductivity; however, sufficient data were not avail-
able to draw definitive conclusions.

Expuations (13316) were wused as previcusly



described to generate the mean and variance of
simulated heave due to parameter variation. Four
parameters were used in the procedure where m =4
in eqn. (13) and

8 =(1 iCV)Eo

O = (1£CV)B, 5)
K@) = (1£CV)KW)

E =(Q+*CWVE

where the bar denotes the assumed mean value used
in the “best” calibration simulation. All other pararm-
eters were held constant.

Boundary conditions measured in the laboratory
were closely approximated in the simulations.
Boundary condition errors were effectively elim-
inated by using the same boundary and initial condi-
tions for each separate simulation. However, because
there are boundary condition errors we can only
comment on variations around a mean and cannot
comment on simulation error (eqn. (1)), resulting
from parameter variability.

Table 4 presents results for a 30-day simulation
assuming parameter coefficients of variation for
8o, 8n, £, and K(y) of 13.3, 15, 10, and 30%, respec-
tively, and using parameters for unrestrained Fair-
banks silt. As can be seen the mean frost heave using
Rosenblueth’s method closely approximates the
“best” simulation shown in Table 3. The coefficient
of variation of simulated frost heave derived from
employing Rosenblueth’s method is essentially sta-
tionary after some possible initial numerical instabil-

TABLE 4
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ity. Although we have not attempted longer simula-
tions using Rosenblueth’s method, it is reasonable to
expect a stationary coefficient of variation. Based
upon field data obtained by Chamberlain (1980),
we have assumed a beta-distribution lower bound of
three standard deviations (Chambertain actually ob-
tained two) and an upper bound of four standard
deviations. The o« and § parameters of the beta-
distribution are derived after Harr (1977) and are
listed for each simulation day tabulated.

As can be seen, a approximately equals a constant
3.2, and B about equais a constant 4.8 in the last
two-thirds of the simulation. The probability con-
fidence limits are also shown in Table 4 for two
standard deviations. The results are slightly skewed
since we deliberately choose a slighily skewed
distribution (Harr, 1977). Other confidence bounds
can be easily obtained by integrating eqn. (22) be-
tween any desired limits.

Additional simulations were performed for un-
restrained Fairbanks silt and slightly restrained and
restrained West Lebanon gravel. A summary of the
normalized results is shown in Table 5. The results
shown in Table 4 are normalized and repeated in
Table 5 on the first line. Similar to the results shown
in Table 4, the coefficient of variation of simulated
frost heave becomes essentially stationary after the
first five days. As can be seen from Table 5, there is
considerable variation in the coefficient of variation
depending on the soil simulated, the magnitude of
parameter variations, and the surcharge condition.
Nevertheless, the o and § parameters of the beta-

Simulated frost heave for uniestrained Fairbanks silt using Rosenblueth’s method and varying 0, & 13.3%, 6, + 15%, F 2 10%,

and K(y) + 30%

Day Mean Standard Cocfficient of a=7— 38, b=y+ 45y « 8 Ply<yp+ 28y] Ply=p- 2Sy ]
cumulative deviation variation
frost heave (%)
{cm)

5 1.5 0.16 11 1.0 2.1 3.55 447 096 0.97

10 2.6 0.24 9 1.9 3.6 3.85 5.83  0.97 0.99

15 3.5 0.31 9 2.6 4.7 324 465 0.96 0.98

20 4.3 0.38 9 3.2 5.8 3.24 478 097 0.99

25 51 044 9 38 6.9 3.24 487 0.9 0.98

30 5.8 0.51 9 4.3 7.8 329 472 096 0.98
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TABLE 5

Simutated frost heave statistics using Rosenblueth’s method and an assumed beta-distribution for unresirained F.

uaresirained and restrained West Lebanon gravel

airbanks silt and

Soil Parameter coefficient Naormalized simulated oy Blyv o i PIY 28,3 €F +25,]
of variation frast heave
8, 0n E  K() CV(%) Min Max
Faitbanks silt 133 15 10 30 9 086 1.12 0,74 1.34 33 48 96
Fajrbanks silt 20 20 20 59 i7 0.76 1.24 0.48 1.66 3.6 5.5 97
Fairbanks silt 13.3 15 10 1D 95 0.05 2190 —1.84% 479 3.7 5.3 97
W. Lebanon
gravel — 0.5 psi
surcharge 133 15 10 30 20 0.67 0.39 131 3.7 33 97
W. Lebanon
gravel — 5.0 psi
surchasge 133 15 10 30 107 0 ~221% 528 34 32 97
W. Lebanon
gravel - 0.5 psi
surcharge 133 15 10 100 103 0 2098 512 34 49 97

%A minus value used to derive beta distribution parameters.

distsibution are quite similar, suggesting a universal
frequency distribution is applicable to the model we
are employing. An o of about 3.5 and a § of about
5.0 will generally reproduce the same coefficient of
variation tabulated, using the correct @ and # Umits,
with only a minor difference in results. The last
column of Table 5 lists the smallest percent probabil-
ity that the computed heave will lie within two
standard deviations of the mean. Recall from Table 4

TABLE 6

Comparison of simulated heave for non-uniform and uniform
soil profiles with average parameters derived from non-
uniform profile

Day  Cumilative frost beave {(em)

Uniform profile Non-uniform profile
5 2.0 21
10 3.1 3.2
15 39 3.9
20 44 4.4
25 4.8 4.8
0 50 5.0

that confidence limits are slightly skewed. To derive
a meaningful beta-distribution it was necessary to
assume a lower imit a that was negative in several
cases. Obviounsly, the lowest possible value of frost
heave must be zero,

Although the results are not presented here,
parameter vasiations were found to have little direct
effect upon simulated frost penetration. The reason
for this is that latent heat effects dominate the
thermal process and we assume that the thermal coef-
ficient of phase change is a constant and equal to the
value for bulk water. The computation of frost pene-
tration is influenced by the amouni of frost heave
estimated. Thus, an error in computed frost heave
will influence the estimate of frost penetration.

A non-uniform seil profile situztion was examined
to demonsirate the {easibility of modeling a layered
sofl profile as an averaged uniform profile. Because
we have not conducted laboratory studies of non-
uniform, layered, soil profiles, we assumed a situation
similar to the case represented in Table 4. Slightly
different boundary conditions were used since the
computer code for the layered case uses a somewhat
different boundary condition simulator. First it was



assumed that the soil profile from surface down
was a 5 cm layer of sandy soil, a 5 ¢m layer of silty
soil, a 5 cm layer of clayey silt soil, and finally
a 30 cm layer of silty soil. Representative hydraulic
parameters were applied and frost heave simulated for
30 days of real time. The resulting heave was com-
pared to a similar simulation using exactly the same
boundary conditions but assuming a uniform soil
profile with hydraulic parameters about equal to the
average of those used in the layer simulation. The
results of both simulations are shown in Table 6. In
view of the often used approximations to represent a
prototype soil profile (i.e. simplify a layered soil by
assuming a homogeneous uniform soil profile), the
results of Table 6 can be viewed with some optimism.
The simulated frost depth at the end of the simula-
tion was more than 17 cm below the original ground
surface so that freezing had completely penetrated
through the first three layers of the soil profile.
Both results are almost identical and the non-upiform
variation is certainly well within the confidence
limits shown for the uniform soil parameter variabil-
ity studies.

DASCUSSION

A powerful general tool is offered to evaluate the
effects of parameter variability upon deterministic
computations of any process in which parameters
have a known variation. The method was applied to
the frost heave simulation or analysis problem.

It was shown that thermal parameter variations
had a less important effect upon simulated frost
heave than hydraulic parameters. The reason for this
is that thermal processes are dominated by the phase
change process.

Table 5 indicates that the most important param-
eter variation is hydraulic conductivity. For gravels,
the coefficient of variation of frost heave will about
equal the coefficient of variation of unfrozen
hydraulic conductivity. For silts, the coefficient of
variation for simulated frost heave will be less than
half of that for gravels at smaller variations of un-
safurated hydranlic conductivity and is about the
same as for gravels at larger variations of unsaturated
hydraulie conductivity. The results obtained for West
Lebanon: gravel with a 5.01bf/in? (34.5 kPa) surcharge
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should be viewed as a special case since West Lebanon
gravel is marginally frost-susceptible and a 5.0 lbffin?
surcharge is about the critical pressure to restrain
frost heave completely. In this situation frost heave is
much more sensitive to parameter variations than
when the system is only moderately restrained.

It appears that a conservative universal approach
to defining the coefficient of variation of simuilated
deterministic heave would be to use an assumed coef-
ficient of variation for hydraulic conductivity, use an
assumed number of standard deviations of variation
to compuie the lower beta-distribution bound, use
the definition of mean and variance of the beta-dis-
tribution as defined by Harr (1977), and compute the
coefficient of varation of frost heave assuming
a=3.5 and §=>5.0. One could safely be assured that
computed heave would lie within two standard
deviations with a 95% probability. Such a computa-
tion would not apply to a critically restrained soil.

Comparing the simulation results to Chamberlain’s
(1980) data and the Albany County Airport data we
have collected shows some striking similarities. If
one assumes —3 and +4 standard deviations for the
beta distribution minimum and maximum, as was
assumed for simulated heave, similar o and 8 param-
eters for the beta-distribution are obtained. For
Chamberlain’s data, @ = 3.6 and 8 = 5.2 were obtained
and for the Albany County Airport data,a= 3.8 and
=54 were obtained. This similarity to the
simulated frost heave results suggests a strong justifi-
cation for our results and our contention that deter-
ministic solutions alone are not adequate. A probabil-
istic model coupled with a deterministic model is
required. Furthermore, the results strongly suggest
that the deterministic approach advocated is valid.
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